MediAssist / app.py
Yashvj123's picture
Update app.py
a8487e6 verified
raw
history blame
4.56 kB
import streamlit as st
import cv2
import numpy as np
import tempfile
import os
from langchain_community.document_loaders import UnstructuredImageLoader
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_huggingface import HuggingFaceEndpoint
# Set Hugging Face API keys
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
os.environ["HF_TOKEN"] = os.getenv("HF")
st.set_page_config(
page_title="MediAssist - Prescription Analyzer",
layout="wide",
page_icon="💊"
)
st.sidebar.title("💊 MediAssist")
st.sidebar.markdown("Analyze prescriptions with ease using AI")
st.sidebar.markdown("---")
st.sidebar.markdown("🔗 **Connect with me:**")
st.sidebar.markdown("""
<div style='display: flex; gap: 10px;'>
<a href="https://github.com/Yashvj22" target="_blank">
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
</a>
<a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
<img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
</a>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown("---")
st.markdown("""
<h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
<h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
<p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
<br>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
if uploaded_file:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(uploaded_file.read())
orig_path = temp_file.name
# Step 1: Read and preprocess image
image = cv2.imread(orig_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
kernel = np.ones((3, 3), np.uint8)
dilated = cv2.dilate(binary_inv, kernel, iterations=1)
# Save preprocessed image for OCR
dilated_path = orig_path.replace(".png", "_dilated.png")
cv2.imwrite(dilated_path, dilated)
loader = UnstructuredImageLoader(dilated_path)
documents = loader.load()
extracted_text = "\n".join([doc.page_content for doc in documents])
template = """
You are a helpful assistant. Here is a prescription text extracted from an image:
{prescription_text}
Please summarize the key medicine names and instructions in bullet points.
"""
prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
model = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
provider="novita",
temperature=0.6,
max_new_tokens=300,
task="conversational"
)
chain = LLMChain(llm=model, prompt=prompt)
col1, col2 = st.columns([1, 2])
with col1:
st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
with col2:
st.success("✅ Prescription Uploaded & Preprocessed Successfully")
st.markdown("### 📜 Extracted Text")
st.code(extracted_text)
if st.button("🔍 Analyze Text"):
with st.spinner("Analyzing..."):
response = chain.run(prescription_text=extracted_text)
st.success(response)
# Cleanup temp files
os.remove(orig_path)
os.remove(dilated_path)
else:
st.image("https://cdn.dribbble.com/users/285475/screenshots/14711920/media/bd46dc2873f7099e4ef9fd53e6f7f1df.png", width=600)
st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)
# st.markdown("### 🌐 Translated Text")
# st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text')
# st.markdown("### ⏱️ Tablet Timing & Instructions")
# st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours")
# st.markdown("### ⚠️ Possible Side Effects")
# st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)")
# os.remove(temp_path)
# os.remove(orig_path)
# os.remove(dilated_path)