MediAssist / app.py
Yashvj123's picture
Update app.py
7138883 verified
raw
history blame
17.5 kB
import streamlit as st
import cv2
import numpy as np
import tempfile
import os
import easyocr
from PIL import Image, ImageDraw, ImageFont
from translate import Translator
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
# Set API keys
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
os.environ["HF_TOKEN"] = os.getenv("HF")
st.set_page_config(
page_title="MediAssist - Prescription Analyzer",
layout="wide",
page_icon="💊"
)
# Split large response into smaller chunks (for translation)
# def split_text_into_chunks(text, max_length=450):
# lines = text.split('\n')
# chunks = []
# current = ""
# for line in lines:
# if len(current) + len(line) + 1 <= max_length:
# current += line + '\n'
# else:
# chunks.append(current.strip())
# current = line + '\n'
# if current:
# chunks.append(current.strip())
# return chunks
# Save text to image
def save_text_as_image(text, file_path):
font = ImageFont.load_default()
lines = text.split('\n')
max_width = max([font.getbbox(line)[2] for line in lines]) + 20
line_height = font.getbbox(text)[3] + 10
img_height = line_height * len(lines) + 20
img = Image.new("RGB", (max_width, img_height), "white")
draw = ImageDraw.Draw(img)
y = 10
for line in lines:
draw.text((10, y), line, font=font, fill="black")
y += line_height
img.save(file_path)
return file_path
st.sidebar.title("💊 MediAssist")
st.sidebar.markdown("Analyze prescriptions with ease using AI")
st.sidebar.markdown("---")
st.sidebar.markdown("🔗 **Connect with me:**")
st.sidebar.markdown("""
<div style='display: flex; gap: 10px;'>
<a href="https://github.com/Yashvj22" target="_blank">
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
</a>
<a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
<img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
</a>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown("---")
st.markdown("""
<h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
<h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
<p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
<br>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
if uploaded_file:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(uploaded_file.read())
orig_path = temp_file.name
# Image preprocessing
image = cv2.imread(orig_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
kernel = np.ones((3, 3), np.uint8)
dilated = cv2.dilate(binary_inv, kernel, iterations=1)
dilated_path = orig_path.replace(".png", "_dilated.png")
cv2.imwrite(dilated_path, dilated)
# OCR
reader = easyocr.Reader(['en'])
text_list = reader.readtext(dilated, detail=0)
text = "\n".join(text_list)
col1, col2 = st.columns([1, 2])
with col1:
st.image(dilated, caption="🧾 Preprocessed Prescription", channels="GRAY", use_container_width=True)
with col2:
st.success("✅ Image Uploaded and Preprocessed")
st.markdown("#### 📝 Extracted Text")
st.code(text)
# Prompt LLM
template = """
You are a helpful medical assistant.
Here is a prescription text extracted from an image:
{prescription_text}
Please do the following:
1. Extract only the medicine names mentioned in the prescription (ignore any other text).
2. For each medicine, provide:
- When to take it (timing and dosage)
- Possible side effects
- Any special instructions
Format your answer as bullet points, listing only medicines and their details.
"""
prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
llm = HuggingFaceEndpoint(
repo_id="aaditya/Llama3-OpenBioLLM-70B",
provider="nebius",
temperature=0.6,
max_new_tokens=300,
task="text-generation"
)
# llm = ChatHuggingFace(
# llm=llm_model,
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
chain = LLMChain(llm=llm, prompt=prompt)
response = ""
hindi_text = ""
if st.button("🔍 Analyze Extracted Text"):
with st.spinner("Analyzing with LLM..."):
response = chain.run(prescription_text=text)
st.markdown("#### 💡 AI-based Medicine Analysis")
st.success(response)
# Save txt and image
txt_path = "medicine_analysis.txt"
with open(txt_path, "w") as f:
f.write(response)
img_path = "medicine_analysis.png"
save_text_as_image(response, img_path)
st.markdown("#### 📥 Download (English)")
col1, col2 = st.columns(2)
with col1:
st.download_button("⬇️ English TXT", data=response.encode(), file_name="medicine_analysis.txt")
with col2:
with open(img_path, "rb") as img_file:
st.download_button("🖼️ English Image", data=img_file, file_name="medicine_analysis.png", mime="image/png")
if response and st.button("🌐 Translate to Hindi"):
with st.spinner("Translating to Hindi..."):
target_lang = "hi"
translator = Translator(to_lang=target_lang)
chunks = split_text_into_chunks(response, max_length=450)
hindi_chunks = []
for chunk in chunks:
try:
translated = translator.translate(chunk)
hindi_chunks.append(translated)
except Exception as e:
hindi_chunks.append("[Error translating chunk]")
hindi_text = "\n\n".join(hindi_chunks)
st.markdown("#### 🌐 Hindi Translation")
st.text_area("Translated Output (Hindi)", hindi_text, height=300)
hindi_img_path = "hindi_output.png"
save_text_as_image(hindi_text, hindi_img_path)
st.markdown("#### 📥 Download (Hindi)")
col3, col4 = st.columns(2)
with col3:
st.download_button("⬇️ Hindi TXT", data=hindi_text.encode(), file_name="hindi_medicine_analysis.txt")
with col4:
with open(hindi_img_path, "rb") as img_file:
st.download_button("🖼️ Hindi Image", data=img_file, file_name="hindi_medicine_analysis.png", mime="image/png")
# Cleanup
try:
os.remove(orig_path)
os.remove(dilated_path)
except:
pass
else:
st.markdown("<center><i>📸 Upload a prescription image to get started</i></center>", unsafe_allow_html=True)
# import streamlit as st
# import cv2
# import numpy as np
# import tempfile
# import os
# import easyocr
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
# # Set Hugging Face API keys
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
# os.environ["HF_TOKEN"] = os.getenv("HF")
# # Streamlit page setup
# st.set_page_config(
# page_title="MediAssist - Prescription Analyzer",
# layout="wide",
# page_icon="💊"
# )
# st.sidebar.title("💊 MediAssist")
# st.sidebar.markdown("Analyze prescriptions with ease using AI")
# st.sidebar.markdown("---")
# st.sidebar.markdown("🔗 **Connect with me:**")
# st.sidebar.markdown("""
# <div style='display: flex; gap: 10px;'>
# <a href="https://github.com/Yashvj22" target="_blank">
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
# </a>
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
# </a>
# </div>
# """, unsafe_allow_html=True)
# st.sidebar.markdown("---")
# st.markdown("""
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
# <br>
# """, unsafe_allow_html=True)
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
# if uploaded_file:
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
# temp_file.write(uploaded_file.read())
# orig_path = temp_file.name
# # Preprocessing
# image = cv2.imread(orig_path)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
# kernel = np.ones((3, 3), np.uint8)
# dilated = cv2.dilate(binary_inv, kernel, iterations=1)
# # Save preprocessed image for future reference/removal
# dilated_path = orig_path.replace(".png", "_dilated.png")
# cv2.imwrite(dilated_path, dilated)
# # OCR using EasyOCR
# reader = easyocr.Reader(['en'])
# text_list = reader.readtext(dilated, detail=0)
# text = "\n".join(text_list)
# # Prompt Template
# template = """
# You are a helpful medical assistant.
# Here is a prescription text extracted from an image:
# {prescription_text}
# Please do the following:
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text).
# 2. For each medicine, provide:
# - When to take it (timing and dosage)
# - Possible side effects
# - Any special instructions
# Format your answer as bullet points, listing only medicines and their details.
# """
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
# llm_model = HuggingFaceEndpoint(
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# llm = ChatHuggingFace(
# llm=llm_model,
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# chain = LLMChain(llm=llm, prompt=prompt)
# col1, col2 = st.columns([1, 2])
# with col1:
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
# with col2:
# st.success("✅ Prescription Uploaded & Preprocessed Successfully")
# st.markdown("### 📜 Extracted Text")
# st.code(text)
# if st.button("🔍 Analyze Text"):
# with st.spinner("Analyzing..."):
# response = chain.run(prescription_text=text)
# st.success(response)
# # Cleanup temp files
# os.remove(orig_path)
# os.remove(dilated_path)
# else:
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)
# import streamlit as st
# import cv2
# import numpy as np
# import tempfile
# import os
# # import pytesseract
# import easyocr
# # from langchain.document_loaders.image import UnstructuredImageLoader
# # from langchain_community.document_loaders import UnstructuredImageLoader
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
# # Set Hugging Face API keys
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
# os.environ["HF_TOKEN"] = os.getenv("HF")
# st.set_page_config(
# page_title="MediAssist - Prescription Analyzer",
# layout="wide",
# page_icon="💊"
# )
# st.sidebar.title("💊 MediAssist")
# st.sidebar.markdown("Analyze prescriptions with ease using AI")
# st.sidebar.markdown("---")
# st.sidebar.markdown("🔗 **Connect with me:**")
# st.sidebar.markdown("""
# <div style='display: flex; gap: 10px;'>
# <a href="https://github.com/Yashvj22" target="_blank">
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
# </a>
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
# </a>
# </div>
# """, unsafe_allow_html=True)
# st.sidebar.markdown("---")
# st.markdown("""
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
# <br>
# """, unsafe_allow_html=True)
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
# if uploaded_file:
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
# temp_file.write(uploaded_file.read())
# orig_path = temp_file.name
# # Step 1: Read and preprocess image
# image = cv2.imread(orig_path)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
# kernel = np.ones((3, 3), np.uint8)
# dilated = cv2.dilate(binary_inv, kernel, iterations=1)
# reader = easyocr.Reader(['en'])
# text_list = reader.readtext(dilated, detail=0)
# text = "\n".join(text_list)
# # text = pytesseract.image_to_string(dilated)
# # Save preprocessed image for OCR
# # dilated_path = orig_path.replace(".png", "_dilated.png")
# # cv2.imwrite(dilated_path, dilated)
# # loader = UnstructuredImageLoader(dilated_path)
# # documents = loader.load()
# # extracted_text = "\n".join([doc.page_content for doc in documents])
# template = """
# You are a helpful medical assistant.
# Here is a prescription text extracted from an image:
# {prescription_text}
# Please do the following:
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text).
# 2. For each medicine, provide:
# - When to take it (timing and dosage)
# - Possible side effects
# - Any special instructions
# Format your answer as bullet points, listing only medicines and their details.
# """
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
# llm_model = HuggingFaceEndpoint(
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# model = ChatHuggingFace(
# llm=llm_model,
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# chain = LLMChain(llm=model, prompt=prompt)
# col1, col2 = st.columns([1, 2])
# with col1:
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
# with col2:
# st.success("✅ Prescription Uploaded & Preprocessed Successfully")
# st.markdown("### 📜 Extracted Text")
# st.code(text)
# # st.code(extracted_text)
# if st.button("🔍 Analyze Text"):
# with st.spinner("Analyzing..."):
# response = chain.run(prescription_text=text)
# # response = chain.run(prescription_text=extracted_text)
# st.success(response)
# # Cleanup temp files
# os.remove(orig_path)
# os.remove(dilated_path)
# else:
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)
# st.markdown("### 🌐 Translated Text")
# st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text')
# st.markdown("### ⏱️ Tablet Timing & Instructions")
# st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours")
# st.markdown("### ⚠️ Possible Side Effects")
# st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)")
# os.remove(temp_path)
# os.remove(orig_path)
# os.remove(dilated_path)