Yanqing0327 commited on
Commit
e120414
·
verified ·
1 Parent(s): 1477d42

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -61
app.py CHANGED
@@ -1,64 +1,34 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import LlavaProcessor, LlavaForConditionalGeneration
4
+ from PIL import Image
5
+
6
+ # 加载模型
7
+ model_id = "llava-hf/llava-v1.5-7b"
8
+ processor = LlavaProcessor.from_pretrained(model_id)
9
+ model = LlavaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16)
10
+
11
+ def llava_infer(image, text):
12
+ if image is None or text.strip() == "":
13
+ return "请提供图片和文本输入"
14
+
15
+ # 处理输入
16
+ inputs = processor(text=text, images=image, return_tensors="pt").to("cuda")
17
+
18
+ # 生成输出
19
+ with torch.no_grad():
20
+ output = model.generate(**inputs, max_new_tokens=100)
21
+
22
+ result = processor.batch_decode(output, skip_special_tokens=True)[0]
23
+ return result
24
+
25
+ # 创建 Gradio 界面
26
+ iface = gr.Interface(
27
+ fn=llava_infer,
28
+ inputs=[gr.Image(type="pil"), gr.Textbox(placeholder="输入文本...")],
29
+ outputs="text",
30
+ title="LLaVA Web UI",
31
+ description="上传图片并输入文本,LLaVA 将返回回答"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
 
34
+ iface.launch()