Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import LlavaProcessor, LlavaForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# 加载模型
|
7 |
+
model_id = "llava-hf/llava-v1.5-7b"
|
8 |
+
processor = LlavaProcessor.from_pretrained(model_id)
|
9 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16)
|
10 |
+
|
11 |
+
def llava_infer(image, text):
|
12 |
+
if image is None or text.strip() == "":
|
13 |
+
return "请提供图片和文本输入"
|
14 |
+
|
15 |
+
# 处理输入
|
16 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to("cuda")
|
17 |
+
|
18 |
+
# 生成输出
|
19 |
+
with torch.no_grad():
|
20 |
+
output = model.generate(**inputs, max_new_tokens=100)
|
21 |
+
|
22 |
+
result = processor.batch_decode(output, skip_special_tokens=True)[0]
|
23 |
+
return result
|
24 |
+
|
25 |
+
# 创建 Gradio 界面
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=llava_infer,
|
28 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(placeholder="输入文本...")],
|
29 |
+
outputs="text",
|
30 |
+
title="LLaVA Web UI",
|
31 |
+
description="上传图片并输入文本,LLaVA 将返回回答"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
|
34 |
+
iface.launch()
|
|
|
|