Spaces:
Sleeping
Sleeping
File size: 10,280 Bytes
e8434f3 25f8aca 1f216d0 e8434f3 e8c4686 1f216d0 e8c4686 1f216d0 e8434f3 e8c4686 1f216d0 e8434f3 25f8aca e8434f3 25f8aca e8434f3 25f8aca e8c4686 25f8aca e8434f3 ea5000d e8c4686 e8434f3 ea5000d e8c4686 e8434f3 25f8aca e8434f3 25f8aca e8434f3 25f8aca e8434f3 e8c4686 acb8402 e8c4686 ea5000d e8c4686 e8434f3 25f8aca e8434f3 e8c4686 25f8aca e8434f3 e8c4686 e8434f3 e8c4686 e8434f3 e8c4686 e8434f3 ea5000d e8c4686 e8434f3 e8c4686 e8434f3 e8c4686 25f8aca e8c4686 acb8402 e8c4686 1f216d0 e8c4686 e8434f3 e8c4686 e8434f3 1f216d0 25f8aca e8434f3 aefa341 e8434f3 25f8aca e8434f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import logging
from typing import Optional
from datetime import datetime
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Depends, Security, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import uvicorn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model
model = None
tokenizer = None
model_loaded = False
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
global model, tokenizer, model_loaded
logger.info("Real LLM AI Assistant starting up...")
try:
# Try to load actual LLM model
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# Use a better conversational model
model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium")
logger.info(f"Loading real LLM model: {model_name}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with optimizations
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
pad_token_id=tokenizer.eos_token_id
)
model_loaded = True
logger.info("Real LLM model loaded successfully!")
except Exception as e:
logger.warning(f"Could not load LLM model: {e}")
logger.info("Will use fallback responses")
model_loaded = False
yield
# Shutdown
logger.info("AI Assistant shutting down...")
# Initialize FastAPI app with lifespan
app = FastAPI(
title="Real LLM AI Agent API",
description="AI Agent powered by actual LLM models",
version="4.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Security
security = HTTPBearer()
# Configuration
API_KEYS = {
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBzS-U"): "user2",
}
# Request/Response models
class ChatRequest(BaseModel):
message: str = Field(..., min_length=1, max_length=2000)
max_length: Optional[int] = Field(200, ge=50, le=500)
temperature: Optional[float] = Field(0.8, ge=0.1, le=1.5)
top_p: Optional[float] = Field(0.9, ge=0.1, le=1.0)
do_sample: Optional[bool] = Field(True)
class ChatResponse(BaseModel):
response: str
model_used: str
timestamp: str
processing_time: float
tokens_used: int
model_loaded: bool
class HealthResponse(BaseModel):
status: str
model_loaded: bool
timestamp: str
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
"""Verify API key authentication"""
api_key = credentials.credentials
if api_key not in API_KEYS:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return API_KEYS[api_key]
def generate_llm_response(message: str, max_length: int = 200, temperature: float = 0.8, top_p: float = 0.9, do_sample: bool = True) -> tuple:
"""Generate response using actual LLM model"""
global model, tokenizer, model_loaded
if not model_loaded or model is None or tokenizer is None:
return "I'm currently running in demo mode. The LLM model couldn't be loaded, but I'm still here to help! Please try asking your question again.", "demo_mode", 0
try:
# Prepare input with conversation format
input_text = f"Human: {message}\nAssistant:"
# Tokenize input
inputs = tokenizer.encode(input_text, return_tensors="pt")
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + max_length,
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
repetition_penalty=1.1,
length_penalty=1.0
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
if "Assistant:" in response:
response = response.split("Assistant:")[-1].strip()
# Remove the input text if it's still there
if input_text.replace("Assistant:", "").strip() in response:
response = response.replace(input_text.replace("Assistant:", "").strip(), "").strip()
# Clean up the response
response = response.strip()
if not response:
response = "I understand your question, but I'm having trouble generating a proper response right now. Could you please rephrase your question?"
# Count tokens
tokens_used = len(tokenizer.encode(response))
return response, os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium"), tokens_used
except Exception as e:
logger.error(f"Error generating LLM response: {str(e)}")
return f"I encountered an issue while processing your request. Error: {str(e)}", "error_mode", 0
@app.get("/", response_model=HealthResponse)
async def root():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Detailed health check"""
return HealthResponse(
status="healthy" if model_loaded else "demo_mode",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.post("/chat", response_model=ChatResponse)
async def chat(
request: ChatRequest,
user: str = Depends(verify_api_key)
):
"""Main chat endpoint using real LLM model"""
start_time = datetime.now()
try:
# Generate response using actual LLM
response_text, model_used, tokens_used = generate_llm_response(
request.message,
request.max_length,
request.temperature,
request.top_p,
request.do_sample
)
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
return ChatResponse(
response=response_text,
model_used=model_used,
timestamp=datetime.now().isoformat(),
processing_time=processing_time,
tokens_used=tokens_used,
model_loaded=model_loaded
)
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error generating response: {str(e)}"
)
@app.get("/models")
async def get_model_info(user: str = Depends(verify_api_key)):
"""Get information about the loaded model"""
return {
"model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium"),
"model_loaded": model_loaded,
"status": "active" if model_loaded else "demo_mode",
"capabilities": [
"Real LLM text generation",
"Conversational AI responses",
"Dynamic response generation",
"Adjustable temperature and top_p",
"Natural language understanding"
],
"version": "4.0.0",
"type": "Real LLM Model" if model_loaded else "Demo Mode"
}
@app.post("/generate")
async def generate_text(
request: ChatRequest,
user: str = Depends(verify_api_key)
):
"""Direct text generation endpoint"""
start_time = datetime.now()
try:
# Generate using LLM without conversation formatting
if model_loaded and model is not None and tokenizer is not None:
inputs = tokenizer.encode(request.message, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + request.max_length,
temperature=request.temperature,
top_p=request.top_p,
do_sample=request.do_sample,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove input text
response = response[len(request.message):].strip()
tokens_used = len(tokenizer.encode(response))
model_used = os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium")
else:
response = "Model not loaded. Running in demo mode."
tokens_used = 0
model_used = "demo_mode"
processing_time = (datetime.now() - start_time).total_seconds()
return ChatResponse(
response=response,
model_used=model_used,
timestamp=datetime.now().isoformat(),
processing_time=processing_time,
tokens_used=tokens_used,
model_loaded=model_loaded
)
except Exception as e:
logger.error(f"Error in generate endpoint: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error generating text: {str(e)}"
)
if __name__ == "__main__":
# For Hugging Face Spaces
port = int(os.getenv("PORT", "7860"))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
reload=False
)
|