import gradio as gr import re import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from nltk.corpus import stopwords from spaces import GPU import nltk # Download stopwords if not already nltk.download('stopwords') stop_words = set(stopwords.words('english')) # Model choices model_choices = { "Pegasus (google/pegasus-xsum)": "google/pegasus-xsum", "BigBird-Pegasus (google/bigbird-pegasus-large-arxiv)": "google/bigbird-pegasus-large-arxiv", "LongT5 Large (google/long-t5-tglobal-large)": "google/long-t5-tglobal-large", "BART Large CNN (facebook/bart-large-cnn)": "facebook/bart-large-cnn", "ProphetNet (microsoft/prophetnet-large-uncased-cnndm)": "microsoft/prophetnet-large-uncased-cnndm", "LED (allenai/led-base-16384)": "allenai/led-base-16384", "T5 Large (t5-large)": "t5-large", "Flan-T5 Large (google/flan-t5-large)": "google/flan-t5-large", "DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6", "DistilBART XSum (mrm8488/distilbart-xsum-12-6)": "mrm8488/distilbart-xsum-12-6", "T5 Base (t5-base)": "t5-base", "Flan-T5 Base (google/flan-t5-base)": "google/flan-t5-base", "BART CNN SamSum (philschmid/bart-large-cnn-samsum)": "philschmid/bart-large-cnn-samsum", "T5 SamSum (knkarthick/pegasus-samsum)": "knkarthick/pegasus-samsum", "LongT5 Base (google/long-t5-tglobal-base)": "google/long-t5-tglobal-base", "T5 Small (t5-small)": "t5-small", "MBART (facebook/mbart-large-cc25)": "facebook/mbart-large-cc25", "MarianMT (Helsinki-NLP/opus-mt-en-ro)": "Helsinki-NLP/opus-mt-en-ro", "Falcon Instruct (tiiuae/falcon-7b-instruct)": "tiiuae/falcon-7b-instruct", "BART ELI5 (yjernite/bart_eli5)": "yjernite/bart_eli5" } model_cache = {} def clean_text(input_text): cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', input_text) words = cleaned_text.split() words = [word for word in words if word.lower() not in stop_words] return " ".join(words).strip() def load_model(model_name): if model_name not in model_cache: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained( model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model_cache[model_name] = (tokenizer, model) # Warm up with dummy input dummy_input = tokenizer("summarize: hello world", return_tensors="pt").input_ids.to(device) model.generate(dummy_input, max_length=10) return model_cache[model_name] @GPU # 👈 Required for ZeroGPU to allocate GPU when this is called def summarize_text(input_text, model_label, char_limit): if not input_text.strip(): return "Please enter some text." input_text = clean_text(input_text) model_name = model_choices[model_label] tokenizer, model = load_model(model_name) if "t5" in model_name.lower() or "flan" in model_name.lower(): input_text = "summarize: " + input_text device = model.device inputs = tokenizer(input_text, return_tensors="pt", truncation=True) input_ids = inputs["input_ids"].to(device) summary_ids = model.generate( input_ids, max_length=30, min_length=5, do_sample=False ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary[:char_limit].strip() # Gradio UI iface = gr.Interface( fn=summarize_text, inputs=[ gr.Textbox(lines=6, label="Enter text to summarize"), gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="Pegasus (google/pegasus-xsum)"), gr.Slider(minimum=30, maximum=200, value=80, step=1, label="Max Character Limit") ], outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"), title="Multi-Model Text Summarizer (GPU Ready)", description="Summarize long or short texts using state-of-the-art Hugging Face models with GPU acceleration (ZeroGPU-compatible)." ) iface.launch()