Spaces:
Sleeping
Sleeping
app.py
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Model choices ordered by accuracy
|
6 |
model_choices = {
|
@@ -28,21 +33,17 @@ model_choices = {
|
|
28 |
|
29 |
model_cache = {}
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
"in", "on", "at", "by", "for", "with", "about", "as", "into", "during", "before", "after",
|
34 |
-
"of", "to", "from", "and", "but", "or", "nor", "so", "yet", "for", "because", "although", "since",
|
35 |
-
"unless", "until", "while", "if", "than", "whether", "where", "when", "that", "which", "who", "whom"
|
36 |
-
])
|
37 |
|
38 |
-
# Function to clean input text by removing
|
39 |
def clean_text(input_text):
|
40 |
# Replace special characters with a space
|
41 |
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', input_text)
|
42 |
|
43 |
-
# Tokenize the input text and remove
|
44 |
words = cleaned_text.split()
|
45 |
-
words = [word for word in words if word.lower() not in
|
46 |
|
47 |
# Rebuild the cleaned text
|
48 |
cleaned_text = " ".join(words)
|
@@ -65,7 +66,7 @@ def summarize_text(input_text, model_label, char_limit):
|
|
65 |
if not input_text.strip():
|
66 |
return "Please enter some text."
|
67 |
|
68 |
-
# Clean the input text by removing special characters and
|
69 |
input_text = clean_text(input_text)
|
70 |
|
71 |
model_name = model_choices[model_label]
|
@@ -79,7 +80,7 @@ def summarize_text(input_text, model_label, char_limit):
|
|
79 |
|
80 |
summary_ids = model.generate(
|
81 |
inputs["input_ids"],
|
82 |
-
max_length=
|
83 |
min_length=5,
|
84 |
do_sample=False
|
85 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
|
6 |
+
# Download the NLTK stopwords (only the first time you run)
|
7 |
+
import nltk
|
8 |
+
nltk.download('stopwords')
|
9 |
|
10 |
# Model choices ordered by accuracy
|
11 |
model_choices = {
|
|
|
33 |
|
34 |
model_cache = {}
|
35 |
|
36 |
+
# Get NLTK stopwords (common stop words)
|
37 |
+
stop_words = set(stopwords.words('english'))
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Function to clean input text by removing unnecessary words like stop words
|
40 |
def clean_text(input_text):
|
41 |
# Replace special characters with a space
|
42 |
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', input_text)
|
43 |
|
44 |
+
# Tokenize the input text and remove stop words
|
45 |
words = cleaned_text.split()
|
46 |
+
words = [word for word in words if word.lower() not in stop_words]
|
47 |
|
48 |
# Rebuild the cleaned text
|
49 |
cleaned_text = " ".join(words)
|
|
|
66 |
if not input_text.strip():
|
67 |
return "Please enter some text."
|
68 |
|
69 |
+
# Clean the input text by removing special characters and stop words
|
70 |
input_text = clean_text(input_text)
|
71 |
|
72 |
model_name = model_choices[model_label]
|
|
|
80 |
|
81 |
summary_ids = model.generate(
|
82 |
inputs["input_ids"],
|
83 |
+
max_length=20, # Still approximate; can be tuned per model
|
84 |
min_length=5,
|
85 |
do_sample=False
|
86 |
)
|