Spaces:
Sleeping
Sleeping
app.py
CHANGED
@@ -34,6 +34,13 @@ model_choices = {
|
|
34 |
|
35 |
model_cache = {}
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Clean text: remove special characters and stop words
|
38 |
def clean_text(input_text):
|
39 |
cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text)
|
@@ -41,6 +48,12 @@ def clean_text(input_text):
|
|
41 |
|
42 |
words = cleaned.split()
|
43 |
words = [word for word in words if word.lower() not in stop_words]
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return " ".join(words).strip()
|
45 |
|
46 |
# Load model and tokenizer
|
|
|
34 |
|
35 |
model_cache = {}
|
36 |
|
37 |
+
def emphasize_keywords(text, keywords, repeat=3):
|
38 |
+
for kw in keywords:
|
39 |
+
pattern = r'\b' + re.escape(kw) + r'\b'
|
40 |
+
text = re.sub(pattern, (kw + ' ') * repeat, text, flags=re.IGNORECASE)
|
41 |
+
return text
|
42 |
+
|
43 |
+
|
44 |
# Clean text: remove special characters and stop words
|
45 |
def clean_text(input_text):
|
46 |
cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text)
|
|
|
48 |
|
49 |
words = cleaned.split()
|
50 |
words = [word for word in words if word.lower() not in stop_words]
|
51 |
+
|
52 |
+
# Example keyword list
|
53 |
+
keywords = ["blazer", "shirt", "trouser", "saree", "tie", "suit"]
|
54 |
+
|
55 |
+
words = emphasize_keywords(words, keywords)
|
56 |
+
|
57 |
return " ".join(words).strip()
|
58 |
|
59 |
# Load model and tokenizer
|