Spaces:
Sleeping
Sleeping
import gradio as gr | |
import re | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from nltk.corpus import stopwords | |
import nltk | |
# Download NLTK stopwords | |
nltk.download('stopwords') | |
stop_words = set(stopwords.words('english')) | |
# Best lightweight summarization models | |
model_choices = { | |
"DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6", | |
"T5 Small (t5-small)": "t5-small", | |
"T5 Base (t5-base)": "t5-base", | |
"Flan-T5 Base (google/flan-t5-base)": "google/flan-t5-base", | |
"DistilBART XSum (sshleifer/distilbart-xsum-12-6)": "sshleifer/distilbart-xsum-12-6" | |
} | |
model_cache = {} | |
# Clean input text (remove stopwords and SKUs/product codes) | |
def clean_text(input_text): | |
# Remove simple SKU codes (e.g., ST1642, AB1234, etc.) | |
cleaned_text = re.sub(r'\b[A-Za-z]{2,}[0-9]{3,}\b', '', input_text) # Alphanumeric SKU | |
# Replace special characters with a space | |
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', cleaned_text) | |
# Tokenize the input text and remove stop words | |
words = cleaned_text.split() | |
words = [word for word in words if word.lower() not in stop_words] | |
# Rebuild the cleaned text | |
cleaned_text = " ".join(words) | |
# Strip leading and trailing spaces | |
cleaned_text = cleaned_text.strip() | |
return cleaned_text | |
# Load model and tokenizer | |
def load_model(model_name): | |
if model_name not in model_cache: | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Warm-up | |
dummy_input = tokenizer("summarize: warm up", return_tensors="pt").input_ids.to(device) | |
model.generate(dummy_input, max_length=10) | |
model_cache[model_name] = (tokenizer, model) | |
return model_cache[model_name] | |
# Summarize the text using a selected model | |
def summarize_text(input_text, model_label, char_limit): | |
if not input_text.strip(): | |
return "Please enter some text." | |
input_text = clean_text(input_text) | |
model_name = model_choices[model_label] | |
tokenizer, model = load_model(model_name) | |
if "t5" in model_name.lower() or "flan" in model_name.lower(): | |
input_text = "summarize: " + input_text | |
device = model.device | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True) | |
input_ids = inputs["input_ids"].to(device) | |
# Adjust the length constraints to make sure min_length < max_length | |
max_len = 30 # Set your desired max length | |
min_len = 5 # Ensure min_length is smaller than max_length | |
# Generate summary | |
summary_ids = model.generate( | |
input_ids, | |
max_length=max_len, | |
min_length=min_len, | |
do_sample=False | |
) | |
# Decode the summary | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary[:char_limit].strip() | |
# Gradio UI | |
iface = gr.Interface( | |
fn=summarize_text, | |
inputs=[ | |
gr.Textbox(lines=6, label="Enter text to summarize"), | |
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="DistilBART CNN (sshleifer/distilbart-cnn-12-6)"), | |
gr.Slider(minimum=30, maximum=200, value=80, step=1, label="Max Character Limit") | |
], | |
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"), | |
title="🚀 Fast Lightweight Summarizer (GPU Optimized)", | |
description="Summarize text quickly using compact models ideal for low-latency and ZeroGPU Spaces." | |
) | |
iface.launch() | |