madankn79's picture
google
26a1a9d
raw
history blame
3.74 kB
import gradio as gr
import re
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from nltk.corpus import stopwords
import nltk
# Download NLTK stopwords
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
# Best lightweight summarization models
model_choices = {
"DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6",
"T5 Small (t5-small)": "t5-small",
"T5 Base (t5-base)": "t5-base",
"Flan-T5 Base (google/flan-t5-base)": "google/flan-t5-base",
"DistilBART XSum (sshleifer/distilbart-xsum-12-6)": "sshleifer/distilbart-xsum-12-6"
}
model_cache = {}
# Clean input text (remove stopwords and SKUs/product codes)
def clean_text(input_text):
# Remove simple SKU codes (e.g., ST1642, AB1234, etc.)
cleaned_text = re.sub(r'\b[A-Za-z]{2,}[0-9]{3,}\b', '', input_text) # Alphanumeric SKU
# Replace special characters with a space
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', cleaned_text)
# Tokenize the input text and remove stop words
words = cleaned_text.split()
words = [word for word in words if word.lower() not in stop_words]
# Rebuild the cleaned text
cleaned_text = " ".join(words)
# Strip leading and trailing spaces
cleaned_text = cleaned_text.strip()
return cleaned_text
# Load model and tokenizer
def load_model(model_name):
if model_name not in model_cache:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Warm-up
dummy_input = tokenizer("summarize: warm up", return_tensors="pt").input_ids.to(device)
model.generate(dummy_input, max_length=10)
model_cache[model_name] = (tokenizer, model)
return model_cache[model_name]
# Summarize the text using a selected model
def summarize_text(input_text, model_label, char_limit):
if not input_text.strip():
return "Please enter some text."
input_text = clean_text(input_text)
model_name = model_choices[model_label]
tokenizer, model = load_model(model_name)
if "t5" in model_name.lower() or "flan" in model_name.lower():
input_text = "summarize: " + input_text
device = model.device
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
input_ids = inputs["input_ids"].to(device)
# Adjust the length constraints to make sure min_length < max_length
max_len = 30 # Set your desired max length
min_len = 5 # Ensure min_length is smaller than max_length
# Generate summary
summary_ids = model.generate(
input_ids,
max_length=max_len,
min_length=min_len,
do_sample=False
)
# Decode the summary
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary[:char_limit].strip()
# Gradio UI
iface = gr.Interface(
fn=summarize_text,
inputs=[
gr.Textbox(lines=6, label="Enter text to summarize"),
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="DistilBART CNN (sshleifer/distilbart-cnn-12-6)"),
gr.Slider(minimum=30, maximum=200, value=80, step=1, label="Max Character Limit")
],
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"),
title="🚀 Fast Lightweight Summarizer (GPU Optimized)",
description="Summarize text quickly using compact models ideal for low-latency and ZeroGPU Spaces."
)
iface.launch()