File size: 21,416 Bytes
5900417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
5900417
945fdb4
 
 
 
 
5900417
945fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5900417
945fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5900417
945fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5900417
945fdb4
5900417
945fdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5900417
 
 
 
 
945fdb4
5900417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import sys
import torch
import numpy as np
import gradio as gr
import torchaudio
import torchvision

# Import Gradio Spaces GPU decorator
try:
    from gradio import spaces
    HAS_SPACES = True
    print("\033[92mINFO\033[0m: Gradio Spaces detected, GPU acceleration will be enabled")
except ImportError:
    HAS_SPACES = False
    print("\033[93mWARN\033[0m: gradio.spaces not available, running without GPU optimization")

# Add parent directory to path to import preprocess functions
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import functions from infer_watermelon.py and train_watermelon for the model
from train_watermelon import WatermelonModel

# Modified version of process_audio_data specifically for the app to handle various tensor shapes
def app_process_audio_data(waveform, sample_rate):
    """Modified version of process_audio_data for the app that handles different tensor dimensions"""
    try:
        print(f"\033[92mDEBUG\033[0m: Processing audio - Initial shape: {waveform.shape}, Sample rate: {sample_rate}")
        
        # Handle different tensor dimensions
        if waveform.dim() == 3:
            print(f"\033[92mDEBUG\033[0m: Found 3D tensor, converting to 2D")
            # For 3D tensor, take the first item (batch dimension)
            waveform = waveform[0]
            
        if waveform.dim() == 2:
            # Use the first channel for stereo audio
            waveform = waveform[0]
            print(f"\033[92mDEBUG\033[0m: Using first channel, new shape: {waveform.shape}")
        
        # Resample to 16kHz if needed
        resample_rate = 16000
        if sample_rate != resample_rate:
            print(f"\033[92mDEBUG\033[0m: Resampling from {sample_rate}Hz to {resample_rate}Hz")
            waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=resample_rate)(waveform)
        
        # Ensure 3 seconds of audio
        if waveform.size(0) < 3 * resample_rate:
            print(f"\033[92mDEBUG\033[0m: Padding audio from {waveform.size(0)} to {3 * resample_rate} samples")
            waveform = torch.nn.functional.pad(waveform, (0, 3 * resample_rate - waveform.size(0)))
        else:
            print(f"\033[92mDEBUG\033[0m: Trimming audio from {waveform.size(0)} to {3 * resample_rate} samples")
            waveform = waveform[: 3 * resample_rate]
        
        # Apply MFCC transformation
        print(f"\033[92mDEBUG\033[0m: Applying MFCC transformation")
        mfcc_transform = torchaudio.transforms.MFCC(
            sample_rate=resample_rate,
            n_mfcc=13,
            melkwargs={
                "n_fft": 256,
                "win_length": 256,
                "hop_length": 128,
                "n_mels": 40,
            }
        )
        
        mfcc = mfcc_transform(waveform)
        print(f"\033[92mDEBUG\033[0m: MFCC output shape: {mfcc.shape}")
        
        return mfcc
    except Exception as e:
        import traceback
        print(f"\033[91mERR!\033[0m: Error in audio processing: {e}")
        print(traceback.format_exc())
        return None

# Similarly for images, but let's import the original one
from preprocess import process_image_data

# Apply GPU decorator directly to the function if available
if HAS_SPACES:
    # Using the decorator directly on the function definition
    @spaces.GPU
    def predict_sweetness(audio, image, model_path):
        """Function with GPU acceleration"""
        try:
            # Now check CUDA availability inside the GPU-decorated function
            if torch.cuda.is_available():
                device = torch.device("cuda")
                print(f"\033[92mINFO\033[0m: CUDA is available. Using device: {device}")
            else:
                device = torch.device("cpu")
                print(f"\033[92mINFO\033[0m: CUDA is not available. Using device: {device}")
            
            # Load model inside the function to ensure it's on the correct device
            model = WatermelonModel().to(device)
            model.load_state_dict(torch.load(model_path, map_location=device))
            model.eval()
            print(f"\033[92mINFO\033[0m: Loaded model from {model_path}")
            
            # Debug information about input types
            print(f"\033[92mDEBUG\033[0m: Audio input type: {type(audio)}")
            print(f"\033[92mDEBUG\033[0m: Audio input shape/length: {len(audio)}")
            print(f"\033[92mDEBUG\033[0m: Image input type: {type(image)}")
            if isinstance(image, np.ndarray):
                print(f"\033[92mDEBUG\033[0m: Image input shape: {image.shape}")
            
            # Handle different audio input formats
            if isinstance(audio, tuple) and len(audio) == 2:
                # Standard Gradio format: (sample_rate, audio_data)
                sample_rate, audio_data = audio
                print(f"\033[92mDEBUG\033[0m: Audio sample rate: {sample_rate}")
                print(f"\033[92mDEBUG\033[0m: Audio data shape: {audio_data.shape}")
            elif isinstance(audio, tuple) and len(audio) > 2:
                # Sometimes Gradio returns (sample_rate, audio_data, other_info...)
                sample_rate, audio_data = audio[0], audio[-1]
                print(f"\033[92mDEBUG\033[0m: Audio sample rate: {sample_rate}")
                print(f"\033[92mDEBUG\033[0m: Audio data shape: {audio_data.shape}")
            elif isinstance(audio, str):
                # Direct path to audio file
                audio_data, sample_rate = torchaudio.load(audio)
                print(f"\033[92mDEBUG\033[0m: Loaded audio from path with shape: {audio_data.shape}")
            else:
                return f"Error: Unsupported audio format. Got {type(audio)}"
            
            # Create a temporary file path for the audio and image
            temp_dir = "temp"
            os.makedirs(temp_dir, exist_ok=True)
            
            temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
            temp_image_path = os.path.join(temp_dir, "temp_image.jpg")
            
            # Import necessary libraries
            from PIL import Image
            
            # Audio handling - direct processing from the data in memory
            if isinstance(audio_data, np.ndarray):
                # Convert numpy array to tensor
                print(f"\033[92mDEBUG\033[0m: Converting numpy audio with shape {audio_data.shape} to tensor")
                audio_tensor = torch.tensor(audio_data).float()
                
                # Handle different audio dimensions
                if audio_data.ndim == 1:
                    # Single channel audio
                    audio_tensor = audio_tensor.unsqueeze(0)
                elif audio_data.ndim == 2:
                    # Ensure channels are first dimension
                    if audio_data.shape[0] > audio_data.shape[1]:
                        # More rows than columns, probably (samples, channels)
                        audio_tensor = torch.tensor(audio_data.T).float()
            else:
                # Already a tensor
                audio_tensor = audio_data.float()
            
            print(f"\033[92mDEBUG\033[0m: Audio tensor shape before processing: {audio_tensor.shape}")
            
            # Skip saving/loading and process directly
            mfcc = app_process_audio_data(audio_tensor, sample_rate)
            print(f"\033[92mDEBUG\033[0m: MFCC tensor shape after processing: {mfcc.shape if mfcc is not None else None}")
            
            # Image handling
            if isinstance(image, np.ndarray):
                print(f"\033[92mDEBUG\033[0m: Converting numpy image with shape {image.shape} to PIL")
                pil_image = Image.fromarray(image)
                pil_image.save(temp_image_path)
                print(f"\033[92mDEBUG\033[0m: Saved image to {temp_image_path}")
            elif isinstance(image, str):
                # If image is already a path
                temp_image_path = image
                print(f"\033[92mDEBUG\033[0m: Using provided image path: {temp_image_path}")
            else:
                return f"Error: Unsupported image format. Got {type(image)}"
            
            # Process image
            print(f"\033[92mDEBUG\033[0m: Loading and preprocessing image from {temp_image_path}")
            image_tensor = torchvision.io.read_image(temp_image_path)
            print(f"\033[92mDEBUG\033[0m: Loaded image shape: {image_tensor.shape}")
            image_tensor = image_tensor.float()
            processed_image = process_image_data(image_tensor)
            print(f"\033[92mDEBUG\033[0m: Processed image shape: {processed_image.shape if processed_image is not None else None}")
            
            # Add batch dimension for inference and move to device
            if mfcc is not None:
                mfcc = mfcc.unsqueeze(0).to(device)
                print(f"\033[92mDEBUG\033[0m: Final MFCC shape with batch dimension: {mfcc.shape}")
            
            if processed_image is not None:
                processed_image = processed_image.unsqueeze(0).to(device)
                print(f"\033[92mDEBUG\033[0m: Final image shape with batch dimension: {processed_image.shape}")
            
            # Run inference
            print(f"\033[92mDEBUG\033[0m: Running inference on device: {device}")
            if mfcc is not None and processed_image is not None:
                with torch.no_grad():
                    sweetness = model(mfcc, processed_image)
                    print(f"\033[92mDEBUG\033[0m: Prediction successful: {sweetness.item()}")
            else:
                return "Error: Failed to process inputs. Please check the debug logs."
            
            # Format the result
            if sweetness is not None:
                result = f"Predicted Sweetness: {sweetness.item():.2f}/13"
                
                # Add a qualitative description
                if sweetness.item() < 9:
                    result += "\n\nThis watermelon is not very sweet. You might want to choose another one."
                elif sweetness.item() < 10:
                    result += "\n\nThis watermelon has moderate sweetness."
                elif sweetness.item() < 11:
                    result += "\n\nThis watermelon is sweet! A good choice."
                else:
                    result += "\n\nThis watermelon is very sweet! Excellent choice!"
                    
                return result
            else:
                return "Error: Could not predict sweetness. Please try again with different inputs."
        
        except Exception as e:
            import traceback
            error_msg = f"Error: {str(e)}\n\n"
            error_msg += traceback.format_exc()
            print(f"\033[91mERR!\033[0m: {error_msg}")
            return error_msg
    
    print("\033[92mINFO\033[0m: GPU-accelerated prediction function created with @spaces.GPU decorator")
else:
    # Regular version without GPU decorator for non-Spaces environments
    def predict_sweetness(audio, image, model_path):
        """Predict sweetness of a watermelon from audio and image input"""
        try:
            # Check for device - will be CPU in this case
            device = torch.device("cpu")
            print(f"\033[92mINFO\033[0m: Using device: {device}")
            
            # Load model inside the function
            model = WatermelonModel().to(device)
            model.load_state_dict(torch.load(model_path, map_location=device))
            model.eval()
            print(f"\033[92mINFO\033[0m: Loaded model from {model_path}")
            
            # Rest of function identical - processing code
            # Debug information about input types
            print(f"\033[92mDEBUG\033[0m: Audio input type: {type(audio)}")
            print(f"\033[92mDEBUG\033[0m: Audio input shape/length: {len(audio)}")
            print(f"\033[92mDEBUG\033[0m: Image input type: {type(image)}")
            if isinstance(image, np.ndarray):
                print(f"\033[92mDEBUG\033[0m: Image input shape: {image.shape}")
            
            # Handle different audio input formats
            if isinstance(audio, tuple) and len(audio) == 2:
                # Standard Gradio format: (sample_rate, audio_data)
                sample_rate, audio_data = audio
                print(f"\033[92mDEBUG\033[0m: Audio sample rate: {sample_rate}")
                print(f"\033[92mDEBUG\033[0m: Audio data shape: {audio_data.shape}")
            elif isinstance(audio, tuple) and len(audio) > 2:
                # Sometimes Gradio returns (sample_rate, audio_data, other_info...)
                sample_rate, audio_data = audio[0], audio[-1]
                print(f"\033[92mDEBUG\033[0m: Audio sample rate: {sample_rate}")
                print(f"\033[92mDEBUG\033[0m: Audio data shape: {audio_data.shape}")
            elif isinstance(audio, str):
                # Direct path to audio file
                audio_data, sample_rate = torchaudio.load(audio)
                print(f"\033[92mDEBUG\033[0m: Loaded audio from path with shape: {audio_data.shape}")
            else:
                return f"Error: Unsupported audio format. Got {type(audio)}"
            
            # Create a temporary file path for the audio and image
            temp_dir = "temp"
            os.makedirs(temp_dir, exist_ok=True)
            
            temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
            temp_image_path = os.path.join(temp_dir, "temp_image.jpg")
            
            # Import necessary libraries
            from PIL import Image
            
            # Audio handling - direct processing from the data in memory
            if isinstance(audio_data, np.ndarray):
                # Convert numpy array to tensor
                print(f"\033[92mDEBUG\033[0m: Converting numpy audio with shape {audio_data.shape} to tensor")
                audio_tensor = torch.tensor(audio_data).float()
                
                # Handle different audio dimensions
                if audio_data.ndim == 1:
                    # Single channel audio
                    audio_tensor = audio_tensor.unsqueeze(0)
                elif audio_data.ndim == 2:
                    # Ensure channels are first dimension
                    if audio_data.shape[0] > audio_data.shape[1]:
                        # More rows than columns, probably (samples, channels)
                        audio_tensor = torch.tensor(audio_data.T).float()
            else:
                # Already a tensor
                audio_tensor = audio_data.float()
            
            print(f"\033[92mDEBUG\033[0m: Audio tensor shape before processing: {audio_tensor.shape}")
            
            # Skip saving/loading and process directly
            mfcc = app_process_audio_data(audio_tensor, sample_rate)
            print(f"\033[92mDEBUG\033[0m: MFCC tensor shape after processing: {mfcc.shape if mfcc is not None else None}")
            
            # Image handling
            if isinstance(image, np.ndarray):
                print(f"\033[92mDEBUG\033[0m: Converting numpy image with shape {image.shape} to PIL")
                pil_image = Image.fromarray(image)
                pil_image.save(temp_image_path)
                print(f"\033[92mDEBUG\033[0m: Saved image to {temp_image_path}")
            elif isinstance(image, str):
                # If image is already a path
                temp_image_path = image
                print(f"\033[92mDEBUG\033[0m: Using provided image path: {temp_image_path}")
            else:
                return f"Error: Unsupported image format. Got {type(image)}"
            
            # Process image
            print(f"\033[92mDEBUG\033[0m: Loading and preprocessing image from {temp_image_path}")
            image_tensor = torchvision.io.read_image(temp_image_path)
            print(f"\033[92mDEBUG\033[0m: Loaded image shape: {image_tensor.shape}")
            image_tensor = image_tensor.float()
            processed_image = process_image_data(image_tensor)
            print(f"\033[92mDEBUG\033[0m: Processed image shape: {processed_image.shape if processed_image is not None else None}")
            
            # Add batch dimension for inference and move to device
            if mfcc is not None:
                mfcc = mfcc.unsqueeze(0).to(device)
                print(f"\033[92mDEBUG\033[0m: Final MFCC shape with batch dimension: {mfcc.shape}")
            
            if processed_image is not None:
                processed_image = processed_image.unsqueeze(0).to(device)
                print(f"\033[92mDEBUG\033[0m: Final image shape with batch dimension: {processed_image.shape}")
            
            # Run inference
            print(f"\033[92mDEBUG\033[0m: Running inference on device: {device}")
            if mfcc is not None and processed_image is not None:
                with torch.no_grad():
                    sweetness = model(mfcc, processed_image)
                    print(f"\033[92mDEBUG\033[0m: Prediction successful: {sweetness.item()}")
            else:
                return "Error: Failed to process inputs. Please check the debug logs."
            
            # Format the result
            if sweetness is not None:
                result = f"Predicted Sweetness: {sweetness.item():.2f}/13"
                
                # Add a qualitative description
                if sweetness.item() < 9:
                    result += "\n\nThis watermelon is not very sweet. You might want to choose another one."
                elif sweetness.item() < 10:
                    result += "\n\nThis watermelon has moderate sweetness."
                elif sweetness.item() < 11:
                    result += "\n\nThis watermelon is sweet! A good choice."
                else:
                    result += "\n\nThis watermelon is very sweet! Excellent choice!"
                    
                return result
            else:
                return "Error: Could not predict sweetness. Please try again with different inputs."
        
        except Exception as e:
            import traceback
            error_msg = f"Error: {str(e)}\n\n"
            error_msg += traceback.format_exc()
            print(f"\033[91mERR!\033[0m: {error_msg}")
            return error_msg

def create_app(model_path):
    """Create and launch the Gradio interface"""
    # Define the prediction function with model path
    def predict_fn(audio, image):
        return predict_sweetness(audio, image, model_path)
    
    # Create Gradio interface
    with gr.Blocks(title="Watermelon Sweetness Predictor", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# 🍉 Watermelon Sweetness Predictor")
        gr.Markdown("""
        This app predicts the sweetness of a watermelon based on its sound and appearance.
        
        ## Instructions:
        1. Upload or record an audio of tapping the watermelon
        2. Upload or capture an image of the watermelon
        3. Click 'Predict' to get the sweetness estimation
        """)
        
        with gr.Row():
            with gr.Column():
                audio_input = gr.Audio(label="Upload or Record Audio", type="numpy")
                image_input = gr.Image(label="Upload or Capture Image")
                submit_btn = gr.Button("Predict Sweetness", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Prediction Results", lines=6)
                
        submit_btn.click(
            fn=predict_fn,
            inputs=[audio_input, image_input],
            outputs=output
        )
        
        gr.Markdown("""
        ## How it works
        
        The app uses a deep learning model that combines:
        - Audio analysis using MFCC features and LSTM neural network
        - Image analysis using ResNet-50 convolutional neural network
        
        The model was trained on a dataset of watermelons with known sweetness values.
        
        ## Tips for best results
        - For audio: Tap the watermelon with your knuckle and record the sound
        - For image: Take a clear photo of the whole watermelon in good lighting
        """)
    
    return interface

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="Watermelon Sweetness Prediction App")
    parser.add_argument(
        "--model_path", 
        type=str, 
        default="models/watermelon_model_final.pt", 
        help="Path to the trained model file"
    )
    parser.add_argument(
        "--share", 
        action="store_true", 
        help="Create a shareable link for the app"
    )
    parser.add_argument(
        "--debug", 
        action="store_true", 
        help="Enable verbose debug output"
    )
    
    args = parser.parse_args()
    
    if args.debug:
        print(f"\033[92mINFO\033[0m: Debug mode enabled")
    
    # Check if model exists
    if not os.path.exists(args.model_path):
        print(f"\033[91mERR!\033[0m: Model not found at {args.model_path}")
        print("\033[92mINFO\033[0m: Please train a model first or provide a valid model path")
        sys.exit(1)
    
    # Create and launch the app
    app = create_app(args.model_path)
    app.launch(share=args.share)