|
|
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
class PanopticDeepLabTargetGenerator: |
|
""" |
|
Generates training targets for Panoptic-DeepLab. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ignore_label, |
|
thing_ids, |
|
sigma=8, |
|
ignore_stuff_in_offset=False, |
|
small_instance_area=0, |
|
small_instance_weight=1, |
|
ignore_crowd_in_semantic=False, |
|
): |
|
""" |
|
Args: |
|
ignore_label: Integer, the ignore label for semantic segmentation. |
|
thing_ids: Set, a set of ids from contiguous category ids belonging |
|
to thing categories. |
|
sigma: the sigma for Gaussian kernel. |
|
ignore_stuff_in_offset: Boolean, whether to ignore stuff region when |
|
training the offset branch. |
|
small_instance_area: Integer, indicates largest area for small instances. |
|
small_instance_weight: Integer, indicates semantic loss weights for |
|
small instances. |
|
ignore_crowd_in_semantic: Boolean, whether to ignore crowd region in |
|
semantic segmentation branch, crowd region is ignored in the original |
|
TensorFlow implementation. |
|
""" |
|
self.ignore_label = ignore_label |
|
self.thing_ids = set(thing_ids) |
|
self.ignore_stuff_in_offset = ignore_stuff_in_offset |
|
self.small_instance_area = small_instance_area |
|
self.small_instance_weight = small_instance_weight |
|
self.ignore_crowd_in_semantic = ignore_crowd_in_semantic |
|
|
|
|
|
self.sigma = sigma |
|
size = 6 * sigma + 3 |
|
x = np.arange(0, size, 1, float) |
|
y = x[:, np.newaxis] |
|
x0, y0 = 3 * sigma + 1, 3 * sigma + 1 |
|
self.g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma**2)) |
|
|
|
def __call__(self, panoptic, segments_info): |
|
"""Generates the training target. |
|
reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py # noqa |
|
reference: https://github.com/facebookresearch/detectron2/blob/main/datasets/prepare_panoptic_fpn.py#L18 # noqa |
|
|
|
Args: |
|
panoptic: numpy.array, panoptic label, we assume it is already |
|
converted from rgb image by panopticapi.utils.rgb2id. |
|
segments_info (list[dict]): see detectron2 documentation of "Use Custom Datasets". |
|
|
|
Returns: |
|
A dictionary with fields: |
|
- sem_seg: Tensor, semantic label, shape=(H, W). |
|
- center: Tensor, center heatmap, shape=(H, W). |
|
- center_points: List, center coordinates, with tuple |
|
(y-coord, x-coord). |
|
- offset: Tensor, offset, shape=(2, H, W), first dim is |
|
(offset_y, offset_x). |
|
- sem_seg_weights: Tensor, loss weight for semantic prediction, |
|
shape=(H, W). |
|
- center_weights: Tensor, ignore region of center prediction, |
|
shape=(H, W), used as weights for center regression 0 is |
|
ignore, 1 is has instance. Multiply this mask to loss. |
|
- offset_weights: Tensor, ignore region of offset prediction, |
|
shape=(H, W), used as weights for offset regression 0 is |
|
ignore, 1 is has instance. Multiply this mask to loss. |
|
""" |
|
height, width = panoptic.shape[0], panoptic.shape[1] |
|
semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_label |
|
center = np.zeros((height, width), dtype=np.float32) |
|
center_pts = [] |
|
offset = np.zeros((2, height, width), dtype=np.float32) |
|
y_coord, x_coord = np.meshgrid( |
|
np.arange(height, dtype=np.float32), np.arange(width, dtype=np.float32), indexing="ij" |
|
) |
|
|
|
semantic_weights = np.ones_like(panoptic, dtype=np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
center_weights = np.zeros_like(panoptic, dtype=np.uint8) |
|
offset_weights = np.zeros_like(panoptic, dtype=np.uint8) |
|
for seg in segments_info: |
|
cat_id = seg["category_id"] |
|
if not (self.ignore_crowd_in_semantic and seg["iscrowd"]): |
|
semantic[panoptic == seg["id"]] = cat_id |
|
if not seg["iscrowd"]: |
|
|
|
|
|
center_weights[panoptic == seg["id"]] = 1 |
|
if not self.ignore_stuff_in_offset or cat_id in self.thing_ids: |
|
offset_weights[panoptic == seg["id"]] = 1 |
|
if cat_id in self.thing_ids: |
|
|
|
mask_index = np.where(panoptic == seg["id"]) |
|
if len(mask_index[0]) == 0: |
|
|
|
continue |
|
|
|
|
|
ins_area = len(mask_index[0]) |
|
if ins_area < self.small_instance_area: |
|
semantic_weights[panoptic == seg["id"]] = self.small_instance_weight |
|
|
|
center_y, center_x = np.mean(mask_index[0]), np.mean(mask_index[1]) |
|
center_pts.append([center_y, center_x]) |
|
|
|
|
|
y, x = int(round(center_y)), int(round(center_x)) |
|
sigma = self.sigma |
|
|
|
ul = int(np.round(x - 3 * sigma - 1)), int(np.round(y - 3 * sigma - 1)) |
|
|
|
br = int(np.round(x + 3 * sigma + 2)), int(np.round(y + 3 * sigma + 2)) |
|
|
|
|
|
gaussian_x0, gaussian_x1 = max(0, -ul[0]), min(br[0], width) - ul[0] |
|
gaussian_y0, gaussian_y1 = max(0, -ul[1]), min(br[1], height) - ul[1] |
|
|
|
|
|
center_x0, center_x1 = max(0, ul[0]), min(br[0], width) |
|
center_y0, center_y1 = max(0, ul[1]), min(br[1], height) |
|
center[center_y0:center_y1, center_x0:center_x1] = np.maximum( |
|
center[center_y0:center_y1, center_x0:center_x1], |
|
self.g[gaussian_y0:gaussian_y1, gaussian_x0:gaussian_x1], |
|
) |
|
|
|
|
|
offset[0][mask_index] = center_y - y_coord[mask_index] |
|
offset[1][mask_index] = center_x - x_coord[mask_index] |
|
|
|
center_weights = center_weights[None] |
|
offset_weights = offset_weights[None] |
|
return dict( |
|
sem_seg=torch.as_tensor(semantic.astype("long")), |
|
center=torch.as_tensor(center.astype(np.float32)), |
|
center_points=center_pts, |
|
offset=torch.as_tensor(offset.astype(np.float32)), |
|
sem_seg_weights=torch.as_tensor(semantic_weights.astype(np.float32)), |
|
center_weights=torch.as_tensor(center_weights.astype(np.float32)), |
|
offset_weights=torch.as_tensor(offset_weights.astype(np.float32)), |
|
) |
|
|