|
|
|
import copy |
|
import logging |
|
import numpy as np |
|
from typing import Callable, List, Union |
|
import torch |
|
from panopticapi.utils import rgb2id |
|
|
|
from detectron2.config import configurable |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
|
|
from .target_generator import PanopticDeepLabTargetGenerator |
|
|
|
__all__ = ["PanopticDeeplabDatasetMapper"] |
|
|
|
|
|
class PanopticDeeplabDatasetMapper: |
|
""" |
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" and label from "pan_seg_file_name" |
|
2. Applies random scale, crop and flip transforms to image and label |
|
3. Prepare data to Tensor and generate training targets from label |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
augmentations: List[Union[T.Augmentation, T.Transform]], |
|
image_format: str, |
|
panoptic_target_generator: Callable, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
panoptic_target_generator: a callable that takes "panoptic_seg" and |
|
"segments_info" to generate training targets for the model. |
|
""" |
|
|
|
self.augmentations = T.AugmentationList(augmentations) |
|
self.image_format = image_format |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.info("Augmentations used in training: " + str(augmentations)) |
|
|
|
self.panoptic_target_generator = panoptic_target_generator |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
augs = [ |
|
T.ResizeShortestEdge( |
|
cfg.INPUT.MIN_SIZE_TRAIN, |
|
cfg.INPUT.MAX_SIZE_TRAIN, |
|
cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING, |
|
) |
|
] |
|
if cfg.INPUT.CROP.ENABLED: |
|
augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)) |
|
augs.append(T.RandomFlip()) |
|
|
|
|
|
dataset_names = cfg.DATASETS.TRAIN |
|
meta = MetadataCatalog.get(dataset_names[0]) |
|
panoptic_target_generator = PanopticDeepLabTargetGenerator( |
|
ignore_label=meta.ignore_label, |
|
thing_ids=list(meta.thing_dataset_id_to_contiguous_id.values()), |
|
sigma=cfg.INPUT.GAUSSIAN_SIGMA, |
|
ignore_stuff_in_offset=cfg.INPUT.IGNORE_STUFF_IN_OFFSET, |
|
small_instance_area=cfg.INPUT.SMALL_INSTANCE_AREA, |
|
small_instance_weight=cfg.INPUT.SMALL_INSTANCE_WEIGHT, |
|
ignore_crowd_in_semantic=cfg.INPUT.IGNORE_CROWD_IN_SEMANTIC, |
|
) |
|
|
|
ret = { |
|
"augmentations": augs, |
|
"image_format": cfg.INPUT.FORMAT, |
|
"panoptic_target_generator": panoptic_target_generator, |
|
} |
|
return ret |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
|
|
image = utils.read_image(dataset_dict["file_name"], format=self.image_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB") |
|
|
|
|
|
aug_input = T.AugInput(image, sem_seg=pan_seg_gt) |
|
_ = self.augmentations(aug_input) |
|
image, pan_seg_gt = aug_input.image, aug_input.sem_seg |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
|
|
|
targets = self.panoptic_target_generator(rgb2id(pan_seg_gt), dataset_dict["segments_info"]) |
|
dataset_dict.update(targets) |
|
|
|
return dataset_dict |
|
|