|
|
|
|
|
import unittest |
|
import torch |
|
|
|
from detectron2.structures import BitMasks, Boxes, Instances |
|
|
|
from .common import get_model |
|
|
|
|
|
|
|
def make_model_inputs(image, instances=None): |
|
if instances is None: |
|
return {"image": image} |
|
|
|
return {"image": image, "instances": instances} |
|
|
|
|
|
def make_empty_instances(h, w): |
|
instances = Instances((h, w)) |
|
instances.gt_boxes = Boxes(torch.rand(0, 4)) |
|
instances.gt_classes = torch.tensor([]).to(dtype=torch.int64) |
|
instances.gt_masks = BitMasks(torch.rand(0, h, w)) |
|
return instances |
|
|
|
|
|
class ModelE2ETest(unittest.TestCase): |
|
CONFIG_PATH = "" |
|
|
|
def setUp(self): |
|
self.model = get_model(self.CONFIG_PATH) |
|
|
|
def _test_eval(self, sizes): |
|
inputs = [make_model_inputs(torch.rand(3, size[0], size[1])) for size in sizes] |
|
self.model.eval() |
|
self.model(inputs) |
|
|
|
|
|
class DensePoseRCNNE2ETest(ModelE2ETest): |
|
CONFIG_PATH = "densepose_rcnn_R_101_FPN_s1x.yaml" |
|
|
|
def test_empty_data(self): |
|
self._test_eval([(200, 250), (200, 249)]) |
|
|