File size: 12,497 Bytes
97a245c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# import sys, os, distutils.core
# # os.system('python -m pip install pyyaml==5.3.1')
# # dist = distutils.core.run_setup("./detectron2/setup.py")
# # temp = ' '.join([f"'{x}'" for x in dist.install_requires])
# # cmd = "python -m pip install {0}".format(temp)
# # os.system(cmd)
# sys.path.insert(0, os.path.abspath('./detectron2'))
# import detectron2
# import cv2
# from detectron2.utils.logger import setup_logger
# setup_logger()
# # from detectron2.modeling import build_model
# from detectron2 import model_zoo
# from detectron2.engine import DefaultPredictor
# from detectron2.config import get_cfg
# from detectron2.utils.visualizer import Visualizer
# from detectron2.data import MetadataCatalog, DatasetCatalog
# from detectron2.utils.visualizer import Visualizer
# from detectron2.checkpoint import DetectionCheckpointer
# from detectron2.data.datasets import register_coco_instances
# cfg = get_cfg()
# cfg.OUTPUT_DIR = "./output/springboard/"
# # model = build_model(cfg) # returns a torch.nn.Module
# cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
# cfg.DATASETS.TEST = ()
# cfg.DATALOADER.NUM_WORKERS = 2
# cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
# cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
# cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
# cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
# cfg.SOLVER.STEPS = [] # do not decay learning rate
# cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
# cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
# cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
# predictor = DefaultPredictor(cfg)
# register_coco_instances("springboard_trains", {}, "./coco_annotations/springboard/train.json", "../data/Boards/spring")
# register_coco_instances("springboard_vals", {}, "./coco_annotations/springboard/val.json", "../data/Boards/spring")
# from detectron2.utils.visualizer import ColorMode
# splash_metadata = MetadataCatalog.get('springboard_vals')
# dataset_dicts = DatasetCatalog.get("springboard_vals")
# outputs_array = []
# for d in dataset_dicts:
# im = cv2.imread(d["file_name"])
# outputs = predictor(im)
# outputs_array.append(outputs) # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
# v = Visualizer(im[:, :, ::-1],
# metadata=splash_metadata,
# scale=0.5,
# instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels. This option is only available for segmentation models
# )
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# img = out.get_image()[:, :, ::-1]
# filename = os.path.join("./output/", d["file_name"][3:])
# print(filename)
# if not cv2.imwrite(filename, img):
# print('no image written')
import torch
import numpy as np
import math
import cv2
import sys, os
from matplotlib import image
from matplotlib import pyplot as plt
from models.detectron2.springboard_detector_setup import get_springboard_detector
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
# springboard MICRO PROGRAM
# returns "left" or "right" depending on whether the board is on the left or right side of the frame
def find_which_side_board_on(output):
pred_classes = output['instances'].pred_classes.cpu().numpy()
platforms = np.where(pred_classes == 0)[0]
scores = output['instances'].scores[platforms]
if len(scores) == 0:
return
pred_masks = output['instances'].pred_masks[platforms]
max_instance = torch.argmax(scores)
pred_mask = np.array(pred_masks[max_instance].cpu())
for i in range(len(pred_mask[0])//2):
if sum(pred_mask[:, i]) != 0:
return "left"
elif sum(pred_mask[:, len(pred_mask[0]) - i - 1]) != 0:
return "right"
return None
def board_end(output, board_side=None):
# pred_classes = output['instances'].pred_classes.cpu().numpy()
# splashes = np.where(pred_classes == 0)[0]
# scores = output['instances'].scores[splashes]
# if len(scores) == 0:
# return
# pred_masks = output['instances'].pred_masks[splashes]
# max_instance = torch.argmax(scores)
# pred_mask = pred_masks[max_instance] # splash instance with highest confidence
pred_classes = output['instances'].pred_classes.cpu().numpy()
platforms = np.where(pred_classes == 0)[0]
scores = output['instances'].scores[platforms]
if len(scores) == 0:
return
pred_masks = output['instances'].pred_masks[platforms]
max_instance = torch.argmax(scores)
pred_mask = np.array(pred_masks[max_instance].cpu()) # splash instance with highest confidence
# need to figure out whether springboard is on left or right side of frame, then need to find where the edge is
if board_side is None:
board_side = find_which_side_board_on(output)
if board_side == "left":
for i in range(len(pred_mask[0]) - 1, -1, -1):
if sum(pred_mask[:, i]) != 0:
trues = np.where(pred_mask[:, i])[0]
return (i, min(trues))
if board_side == "right":
for i in range(len(pred_mask[0])):
if sum(pred_mask[:, i]) != 0:
trues = np.where(pred_mask[:, i])[0]
return (i, min(trues))
return None
def draw_board_end_coord(im, coord):
print("hello, im in the drawing func")
image = cv2.circle(im, (int(coord[0]),int(coord[1])), radius=10, color=(0, 0, 255), thickness=-1)
filename = os.path.join("./output/board_end/", d["file_name"][3:])
print(filename)
if not cv2.imwrite(filename, image):
print(filename)
print("file failed to write")
# loops over each image, plots a point for the end of board
# i = 0
# for d in dataset_dicts:
# im = cv2.imread(d["file_name"])
# outputs = predictor(im)
# # to draw a point on co-ordinate (200,300)
# coord = board_end(outputs)
# if coord == None:
# continue
# # plt.plot(coord[0], coord[1], marker='v', color="white")
# draw_board_end_coord(im, coord)
# i+=1
## TODO: ADD POSE ESTIMATOR, AND CALCULATE DISTANCE FROM BOARD
# PLOT RESULTS OF ONE FULL DIVE
# KEYPOINT_INDEXES = {
# 0: 'r ankle',
# 1: 'r knee',
# 2: 'r hip',
# 3: 'l hip',
# 4: 'l knee',
# 5: 'l ankle',
# 6: 'pelvis',
# 7: 'thorax',
# 8: 'upper neck',
# 9: 'head',
# 10: 'r wrist',
# 11: 'r elbow',
# 12: 'r shoulder',
# 13: 'l shoulder',
# 14: 'l elbow',
# 15: 'l wrist',
# }
# demo_image = '../data/Boards/spring/img_17_10_00014517.jpg'
# im = cv2.imread(demo_image)
# pose_pred = get_pose_estimation(demo_image)
# print("pose_pred", pose_pred)
# predictor = get_springboard_detector()
# outputs = predictor(im)
# # to draw a point on co-ordinate (200,300)
# coord = board_end(outputs)
def draw_two_coord(im, coord1, coord2, filename):
print("hello, im in the drawing func")
image = cv2.circle(im, (int(coord1[0]),int(coord1[1])), radius=5, color=(0, 0, 255), thickness=-1)
image = cv2.circle(image, (int(coord2[0]),int(coord2[1])), radius=5, color=(0, 255, 0), thickness=-1)
print(filename)
if not cv2.imwrite(filename, image):
print(filename)
print("file failed to write")
# draw_two_coord(im, coord, np.array(pose_pred)[0][5], filename==os.path.join("./output/board_end/", demo_image[3:]))
# print("pose_pred.shape", np.array(pose_pred).shape)
# print("coord.shape", np.array(coord).shape)
# print("DISTANCE BETWEEN END BOARD AND LEFT ANKLE:", math.dist(np.array(pose_pred)[0][5], np.array(coord)))
def calculate_distance_from_springboard_for_one_frame(filepath, visualize=False, dive_folder_num="", springboard_detector=None, pose_pred=None, pose_model=None, board_end_coord=None, board_side=None):
if springboard_detector is None:
springboard_detector = get_springboard_detector()
if pose_pred is None:
diver_box, pose_pred = get_pose_estimation(filepath, pose_model=pose_model)
im = cv2.imread(filepath)
outputs = springboard_detector(im)
if board_end_coord is None:
board_end_coord = board_end(outputs, board_side=board_side)
minDist = None
if board_end_coord is not None and pose_pred is not None and len(board_end_coord) == 2:
minDist = float('inf')
for i in range(len(np.array(pose_pred)[0])):
distance = math.dist(np.array(pose_pred)[0][i], np.array(board_end_coord))
if distance < minDist:
minDist = distance
minJoint = i
if visualize:
file_name = filepath.split('/')[-1]
folder = "./output/data/distance_from_board/{}".format(dive_folder_num)
out_filename = os.path.join(folder, file_name)
if not os.path.exists(folder):
os.makedirs(folder)
draw_two_coord(im, board_end_coord, np.array(pose_pred)[0][minJoint], filename=out_filename)
## more verbose
# else:
# print("springboard or diver not detected in", filepath)
# if board_end_coord is None:
# print("springboard not detected in", filepath)
# if pose_pred is None:
# print("diver not detected in", filepath)
return minDist
def calculate_distance_from_platform_for_one_frame(filepath, im=None, visualize=False, dive_folder_num="", platform_detector=None, pose_pred=None, diver_detector=None, pose_model=None, board_end_coord=None, board_side=None):
if platform_detector is None:
platform_detector = get_platform_detector()
if pose_pred is None:
diver_box, pose_pred = get_pose_estimation(filepath, image_bgr=im, diver_detector=diver_detector, pose_model=pose_model)
if im is None and filepath != "":
im = cv2.imread(filepath)
if board_end_coord is None:
outputs = platform_detector(im)
board_end_coord = board_end(outputs, board_side=board_side)
minDist = None
if board_end_coord is not None and pose_pred is not None and len(board_end_coord) == 2:
minDist = float('inf')
for i in range(len(np.array(pose_pred)[0])):
distance = math.dist(np.array(pose_pred)[0][i], np.array(board_end_coord))
if distance < minDist:
minDist = distance
minJoint = i
if visualize:
file_name = filepath.split('/')[-1]
folder = "./output/data/distance_from_board/{}".format(dive_folder_num)
out_filename = os.path.join(folder, file_name)
if not os.path.exists(folder):
os.makedirs(folder)
draw_two_coord(im, board_end_coord, np.array(pose_pred)[0][minJoint], filename=out_filename)
## more verbose
# else:
# print("platform or diver not detected in", filepath)
# if board_end_coord is None:
# print("platform not detected in", filepath)
# if pose_pred is None:
# print("diver not detected in", filepath)
return minDist
# distances = []
# directory = "./FineDiving/datasets/FINADiving_MTL_256s/17/73/"
# file_names = os.listdir(directory)
# for file_name in file_names:
# path = os.path.join(directory, file_name)
# pose_pred = get_pose_estimation(path)
# print("PATH IM_17_73:", path)
# im = cv2.imread(path)
# outputs = predictor(im)
# coord = board_end(outputs)
# if coord is not None and pose_pred is not None and len(coord) == 2:
# distance = math.dist(np.array(pose_pred)[0][5], np.array(coord))
# if distance is None:
# distances.append(0)
# else:
# distances.append(distance)
# filename = os.path.join("./output/data/img_17_73/", file_name)
# draw_two_coord(im, coord, np.array(pose_pred)[0][5], filename=filename)
# else:
# distances.append(0)
# plt.plot(range(len(distances)), distances)
# plt.savefig('./output/data/img_17_73/img_17_73_board_dist_graph.png')
|