File size: 12,497 Bytes
97a245c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# import sys, os, distutils.core

# # os.system('python -m pip install pyyaml==5.3.1')
# # dist = distutils.core.run_setup("./detectron2/setup.py")
# # temp = ' '.join([f"'{x}'" for x in dist.install_requires])
# # cmd = "python -m pip install {0}".format(temp)
# # os.system(cmd)
# sys.path.insert(0, os.path.abspath('./detectron2'))

# import detectron2
# import cv2

# from detectron2.utils.logger import setup_logger
# setup_logger()

# # from detectron2.modeling import build_model
# from detectron2 import model_zoo
# from detectron2.engine import DefaultPredictor
# from detectron2.config import get_cfg
# from detectron2.utils.visualizer import Visualizer
# from detectron2.data import MetadataCatalog, DatasetCatalog
# from detectron2.utils.visualizer import Visualizer
# from detectron2.checkpoint import DetectionCheckpointer
# from detectron2.data.datasets import register_coco_instances

# cfg = get_cfg()
# cfg.OUTPUT_DIR = "./output/springboard/"
# # model = build_model(cfg)  # returns a torch.nn.Module
# cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
# cfg.DATASETS.TEST = ()
# cfg.DATALOADER.NUM_WORKERS = 2
# cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")  # Let training initialize from model zoo
# cfg.SOLVER.IMS_PER_BATCH = 2  # This is the real "batch size" commonly known to deep learning people
# cfg.SOLVER.BASE_LR = 0.00025  # pick a good LR
# cfg.SOLVER.MAX_ITER = 300    # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
# cfg.SOLVER.STEPS = []        # do not decay learning rate
# cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128   # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
# cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
# cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")  # path to the model we just trained
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7   # set a custom testing threshold
# predictor = DefaultPredictor(cfg)
# register_coco_instances("springboard_trains", {}, "./coco_annotations/springboard/train.json", "../data/Boards/spring")
# register_coco_instances("springboard_vals", {}, "./coco_annotations/springboard/val.json", "../data/Boards/spring")

# from detectron2.utils.visualizer import ColorMode
# splash_metadata = MetadataCatalog.get('springboard_vals')
# dataset_dicts = DatasetCatalog.get("springboard_vals")

# outputs_array = []
# for d in dataset_dicts:
#     im = cv2.imread(d["file_name"])
#     outputs = predictor(im)
#     outputs_array.append(outputs)  # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
#     v = Visualizer(im[:, :, ::-1],
#                    metadata=splash_metadata,
#                    scale=0.5,
#                    instance_mode=ColorMode.IMAGE_BW   # remove the colors of unsegmented pixels. This option is only available for segmentation models
#     )
#     out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
#     img = out.get_image()[:, :, ::-1]
#     filename = os.path.join("./output/", d["file_name"][3:])
#     print(filename)
#     if not cv2.imwrite(filename, img):
#       print('no image written')

import torch
import numpy as np
import math
import cv2
import sys, os
from matplotlib import image
from matplotlib import pyplot as plt
from models.detectron2.springboard_detector_setup import get_springboard_detector
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation

# springboard MICRO PROGRAM

# returns "left" or "right" depending on whether the board is on the left or right side of the frame
def find_which_side_board_on(output):
    pred_classes = output['instances'].pred_classes.cpu().numpy()
    platforms = np.where(pred_classes == 0)[0]
    scores = output['instances'].scores[platforms]
    if len(scores) == 0:
      return
    pred_masks = output['instances'].pred_masks[platforms]
    max_instance = torch.argmax(scores)
    pred_mask = np.array(pred_masks[max_instance].cpu()) 
    for i in range(len(pred_mask[0])//2):
        if sum(pred_mask[:, i]) != 0:
            return "left"
        elif sum(pred_mask[:, len(pred_mask[0]) - i - 1]) != 0:
            return "right"
    return None

def board_end(output, board_side=None):
    # pred_classes = output['instances'].pred_classes.cpu().numpy()
    # splashes = np.where(pred_classes == 0)[0]
    # scores = output['instances'].scores[splashes]
    # if len(scores) == 0:
    #     return
    # pred_masks = output['instances'].pred_masks[splashes]
    # max_instance = torch.argmax(scores)
    # pred_mask = pred_masks[max_instance] # splash instance with highest confidence
    pred_classes = output['instances'].pred_classes.cpu().numpy()
    platforms = np.where(pred_classes == 0)[0]
    scores = output['instances'].scores[platforms]
    if len(scores) == 0:
      return
    pred_masks = output['instances'].pred_masks[platforms]
    max_instance = torch.argmax(scores)
    pred_mask = np.array(pred_masks[max_instance].cpu()) # splash instance with highest confidence
    # need to figure out whether springboard is on left or right side of frame, then need to find where the edge is
    if board_side is None:
        board_side = find_which_side_board_on(output)
    if board_side == "left":
      for i in range(len(pred_mask[0]) - 1, -1, -1):
        if sum(pred_mask[:, i]) != 0:
          trues = np.where(pred_mask[:, i])[0]
          return (i, min(trues))
    if board_side == "right":
      for i in range(len(pred_mask[0])):
        if sum(pred_mask[:, i]) != 0:
          trues = np.where(pred_mask[:, i])[0]
          return (i, min(trues))
    return None

def draw_board_end_coord(im, coord):
    print("hello, im in the drawing func")
    image = cv2.circle(im, (int(coord[0]),int(coord[1])), radius=10, color=(0, 0, 255), thickness=-1)
    filename = os.path.join("./output/board_end/", d["file_name"][3:])
    print(filename)
    if not cv2.imwrite(filename, image):
        print(filename)
        print("file failed to write")

# loops over each image, plots a point for the end of board
# i = 0
# for d in dataset_dicts:
#   im = cv2.imread(d["file_name"])
#   outputs = predictor(im)

#   # to draw a point on co-ordinate (200,300)
#   coord = board_end(outputs)
#   if coord == None:
#     continue
#   # plt.plot(coord[0], coord[1], marker='v', color="white")
#   draw_board_end_coord(im, coord)
#   i+=1

## TODO: ADD POSE ESTIMATOR, AND CALCULATE DISTANCE FROM BOARD
# PLOT RESULTS OF ONE FULL DIVE 
# KEYPOINT_INDEXES = {
#     0: 'r ankle',
#     1: 'r knee',
#     2: 'r hip',
#     3: 'l hip',
#     4: 'l knee',
#     5: 'l ankle',
#     6: 'pelvis',
#     7: 'thorax',
#     8: 'upper neck',
#     9: 'head',
#     10: 'r wrist',
#     11: 'r elbow',
#     12: 'r shoulder',
#     13: 'l shoulder',
#     14: 'l elbow',
#     15: 'l wrist',
# }

# demo_image = '../data/Boards/spring/img_17_10_00014517.jpg'
# im = cv2.imread(demo_image)

# pose_pred = get_pose_estimation(demo_image)
# print("pose_pred", pose_pred)

# predictor = get_springboard_detector()
# outputs = predictor(im)
# # to draw a point on co-ordinate (200,300)
# coord = board_end(outputs)

def draw_two_coord(im, coord1, coord2, filename):
    print("hello, im in the drawing func")
    image = cv2.circle(im, (int(coord1[0]),int(coord1[1])), radius=5, color=(0, 0, 255), thickness=-1)
    image = cv2.circle(image, (int(coord2[0]),int(coord2[1])), radius=5, color=(0, 255, 0), thickness=-1)
    print(filename)
    if not cv2.imwrite(filename, image):
        print(filename)
        print("file failed to write")

# draw_two_coord(im, coord, np.array(pose_pred)[0][5], filename==os.path.join("./output/board_end/", demo_image[3:]))

# print("pose_pred.shape", np.array(pose_pred).shape)
# print("coord.shape", np.array(coord).shape)
# print("DISTANCE BETWEEN END BOARD AND LEFT ANKLE:", math.dist(np.array(pose_pred)[0][5], np.array(coord)))

def calculate_distance_from_springboard_for_one_frame(filepath, visualize=False, dive_folder_num="", springboard_detector=None, pose_pred=None, pose_model=None, board_end_coord=None, board_side=None):
    if springboard_detector is None:
        springboard_detector = get_springboard_detector()
    if pose_pred is None:
        diver_box, pose_pred = get_pose_estimation(filepath, pose_model=pose_model)
    im = cv2.imread(filepath)
    outputs = springboard_detector(im)
    if board_end_coord is None:
        board_end_coord = board_end(outputs, board_side=board_side)
    minDist = None
    if board_end_coord is not None and pose_pred is not None and len(board_end_coord) == 2:
        minDist = float('inf')
        for i in range(len(np.array(pose_pred)[0])):
            distance = math.dist(np.array(pose_pred)[0][i], np.array(board_end_coord))
            if distance < minDist:
                minDist = distance
                minJoint = i
        if visualize:
            file_name = filepath.split('/')[-1]
            folder = "./output/data/distance_from_board/{}".format(dive_folder_num)
            out_filename = os.path.join(folder, file_name)
            if not os.path.exists(folder):
                os.makedirs(folder)
            draw_two_coord(im, board_end_coord, np.array(pose_pred)[0][minJoint], filename=out_filename)
    ## more verbose
    # else:
        # print("springboard or diver not detected in", filepath)
        # if board_end_coord is None:
        #     print("springboard not detected in", filepath)
        # if pose_pred is None:
        #     print("diver not detected in", filepath)
    return minDist

def calculate_distance_from_platform_for_one_frame(filepath, im=None, visualize=False, dive_folder_num="", platform_detector=None, pose_pred=None, diver_detector=None, pose_model=None, board_end_coord=None, board_side=None):
    if platform_detector is None:
        platform_detector = get_platform_detector()
    if pose_pred is None:
        diver_box, pose_pred = get_pose_estimation(filepath, image_bgr=im, diver_detector=diver_detector, pose_model=pose_model)
    if im is None and filepath != "":
        im = cv2.imread(filepath)
    if board_end_coord is None:
        outputs = platform_detector(im)
        board_end_coord = board_end(outputs, board_side=board_side)
    minDist = None
    if board_end_coord is not None and pose_pred is not None and len(board_end_coord) == 2:
        minDist = float('inf')
        for i in range(len(np.array(pose_pred)[0])):
            distance = math.dist(np.array(pose_pred)[0][i], np.array(board_end_coord))
            if distance < minDist:
                minDist = distance
                minJoint = i
        if visualize:
            file_name = filepath.split('/')[-1]
            folder = "./output/data/distance_from_board/{}".format(dive_folder_num)
            out_filename = os.path.join(folder, file_name)
            if not os.path.exists(folder):
                os.makedirs(folder)
            draw_two_coord(im, board_end_coord, np.array(pose_pred)[0][minJoint], filename=out_filename)
    ## more verbose
    # else:
        # print("platform or diver not detected in", filepath)
        # if board_end_coord is None:
        #     print("platform not detected in", filepath)
        # if pose_pred is None:
        #     print("diver not detected in", filepath)
    return minDist

# distances = []
# directory = "./FineDiving/datasets/FINADiving_MTL_256s/17/73/"
# file_names = os.listdir(directory)
# for file_name in file_names:
#     path = os.path.join(directory, file_name)
#     pose_pred = get_pose_estimation(path)
#     print("PATH IM_17_73:", path)
#     im = cv2.imread(path)
#     outputs = predictor(im)
#     coord = board_end(outputs)
#     if coord is not None and pose_pred is not None and len(coord) == 2:
#       distance = math.dist(np.array(pose_pred)[0][5], np.array(coord))
#       if distance is None:
#         distances.append(0)
#       else:
#         distances.append(distance)
#         filename = os.path.join("./output/data/img_17_73/", file_name)
#         draw_two_coord(im, coord, np.array(pose_pred)[0][5], filename=filename)
#     else:
#       distances.append(0)

# plt.plot(range(len(distances)), distances)
# plt.savefig('./output/data/img_17_73/img_17_73_board_dist_graph.png')