File size: 11,771 Bytes
5209465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Ke Sun (sunk@mail.ustc.edu.cn)
# Modified by Depu Meng (mdp@mail.ustc.edu.cn)
# ------------------------------------------------------------------------------
import argparse
import numpy as np
import matplotlib.pyplot as plt
import cv2
import json
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import os
class ColorStyle:
def __init__(self, color, link_pairs, point_color):
self.color = color
self.link_pairs = link_pairs
self.point_color = point_color
for i in range(len(self.color)):
self.link_pairs[i].append(tuple(np.array(self.color[i])/255.))
self.ring_color = []
for i in range(len(self.point_color)):
self.ring_color.append(tuple(np.array(self.point_color[i])/255.))
# Xiaochu Style
# (R,G,B)
color1 = [(179,0,0),(228,26,28),(255,255,51),
(49,163,84), (0,109,45), (255,255,51),
(240,2,127),(240,2,127),(240,2,127), (240,2,127), (240,2,127),
(217,95,14), (254,153,41),(255,255,51),
(44,127,184),(0,0,255)]
link_pairs1 = [
[15, 13], [13, 11], [11, 5],
[12, 14], [14, 16], [12, 6],
[3, 1],[1, 2],[1, 0],[0, 2],[2,4],
[9, 7], [7,5], [5, 6],
[6, 8], [8, 10],
]
point_color1 = [(240,2,127),(240,2,127),(240,2,127),
(240,2,127), (240,2,127),
(255,255,51),(255,255,51),
(254,153,41),(44,127,184),
(217,95,14),(0,0,255),
(255,255,51),(255,255,51),(228,26,28),
(49,163,84),(252,176,243),(0,176,240),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142)]
xiaochu_style = ColorStyle(color1, link_pairs1, point_color1)
# Chunhua Style
# (R,G,B)
color2 = [(252,176,243),(252,176,243),(252,176,243),
(0,176,240), (0,176,240), (0,176,240),
(240,2,127),(240,2,127),(240,2,127), (240,2,127), (240,2,127),
(255,255,0), (255,255,0),(169, 209, 142),
(169, 209, 142),(169, 209, 142)]
link_pairs2 = [
[15, 13], [13, 11], [11, 5],
[12, 14], [14, 16], [12, 6],
[3, 1],[1, 2],[1, 0],[0, 2],[2,4],
[9, 7], [7,5], [5, 6], [6, 8], [8, 10],
]
point_color2 = [(240,2,127),(240,2,127),(240,2,127),
(240,2,127), (240,2,127),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(252,176,243),(0,176,240),(252,176,243),
(0,176,240),(252,176,243),(0,176,240),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142)]
chunhua_style = ColorStyle(color2, link_pairs2, point_color2)
def parse_args():
parser = argparse.ArgumentParser(description='Visualize COCO predictions')
# general
parser.add_argument('--image-path',
help='Path of COCO val images',
type=str,
default='data/coco/images/val2017/'
)
parser.add_argument('--gt-anno',
help='Path of COCO val annotation',
type=str,
default='data/coco/annotations/person_keypoints_val2017.json'
)
parser.add_argument('--save-path',
help="Path to save the visualizations",
type=str,
default='visualization/coco/')
parser.add_argument('--prediction',
help="Prediction file to visualize",
type=str,
required=True)
parser.add_argument('--style',
help="Style of the visualization: Chunhua style or Xiaochu style",
type=str,
default='chunhua')
args = parser.parse_args()
return args
def map_joint_dict(joints):
joints_dict = {}
for i in range(joints.shape[0]):
x = int(joints[i][0])
y = int(joints[i][1])
id = i
joints_dict[id] = (x, y)
return joints_dict
def plot(data, gt_file, img_path, save_path,
link_pairs, ring_color, save=True):
# joints
coco = COCO(gt_file)
coco_dt = coco.loadRes(data)
coco_eval = COCOeval(coco, coco_dt, 'keypoints')
coco_eval._prepare()
gts_ = coco_eval._gts
dts_ = coco_eval._dts
p = coco_eval.params
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
threshold = 0.3
joint_thres = 0.2
for catId in catIds:
for imgId in p.imgIds[:5000]:
# dimention here should be Nxm
gts = gts_[imgId, catId]
dts = dts_[imgId, catId]
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0:p.maxDets[-1]]
if len(gts) == 0 or len(dts) == 0:
continue
sum_score = 0
num_box = 0
img_name = str(imgId).zfill(12)
# Read Images
img_file = img_path + img_name + '.jpg'
data_numpy = cv2.imread(img_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
h = data_numpy.shape[0]
w = data_numpy.shape[1]
# Plot
fig = plt.figure(figsize=(w/100, h/100), dpi=100)
ax = plt.subplot(1,1,1)
bk = plt.imshow(data_numpy[:,:,::-1])
bk.set_zorder(-1)
print(img_name)
for j, gt in enumerate(gts):
# matching dt_box and gt_box
bb = gt['bbox']
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt['keypoints'])
#xg = g[0::3]; yg = g[1::3];
vg = g[2::3]
for i, dt in enumerate(dts):
# Calculate IoU
dt_bb = dt['bbox']
dt_x0 = dt_bb[0] - dt_bb[2]; dt_x1 = dt_bb[0] + dt_bb[2] * 2
dt_y0 = dt_bb[1] - dt_bb[3]; dt_y1 = dt_bb[1] + dt_bb[3] * 2
ol_x = min(x1, dt_x1) - max(x0, dt_x0)
ol_y = min(y1, dt_y1) - max(y0, dt_y0)
ol_area = ol_x * ol_y
s_x = max(x1, dt_x1) - min(x0, dt_x0)
s_y = max(y1, dt_y1) - min(y0, dt_y0)
sum_area = s_x * s_y
iou = ol_area / (sum_area + np.spacing(1))
score = dt['score']
if iou < 0.1 or score < threshold:
continue
else:
print('iou: ', iou)
dt_w = dt_x1 - dt_x0
dt_h = dt_y1 - dt_y0
ref = min(dt_w, dt_h)
num_box += 1
sum_score += dt['score']
dt_joints = np.array(dt['keypoints']).reshape(17,-1)
joints_dict = map_joint_dict(dt_joints)
# stick
for k, link_pair in enumerate(link_pairs):
if link_pair[0] in joints_dict \
and link_pair[1] in joints_dict:
if dt_joints[link_pair[0],2] < joint_thres \
or dt_joints[link_pair[1],2] < joint_thres \
or vg[link_pair[0]] == 0 \
or vg[link_pair[1]] == 0:
continue
if k in range(6,11):
lw = 1
else:
lw = ref / 100.
line = mlines.Line2D(
np.array([joints_dict[link_pair[0]][0],
joints_dict[link_pair[1]][0]]),
np.array([joints_dict[link_pair[0]][1],
joints_dict[link_pair[1]][1]]),
ls='-', lw=lw, alpha=1, color=link_pair[2],)
line.set_zorder(0)
ax.add_line(line)
# black ring
for k in range(dt_joints.shape[0]):
if dt_joints[k,2] < joint_thres \
or vg[link_pair[0]] == 0 \
or vg[link_pair[1]] == 0:
continue
if dt_joints[k,0] > w or dt_joints[k,1] > h:
continue
if k in range(5):
radius = 1
else:
radius = ref / 100
circle = mpatches.Circle(tuple(dt_joints[k,:2]),
radius=radius,
ec='black',
fc=ring_color[k],
alpha=1,
linewidth=1)
circle.set_zorder(1)
ax.add_patch(circle)
avg_score = (sum_score / (num_box+np.spacing(1)))*1000
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.axis('off')
plt.subplots_adjust(top=1,bottom=0,left=0,right=1,hspace=0,wspace=0)
plt.margins(0,0)
if save:
plt.savefig(save_path + \
'score_'+str(np.int(avg_score))+ \
'_id_'+str(imgId)+ \
'_'+img_name + '.png',
format='png', bbox_inckes='tight', dpi=100)
plt.savefig(save_path +'id_'+str(imgId)+ '.pdf', format='pdf',
bbox_inckes='tight', dpi=100)
# plt.show()
plt.close()
if __name__ == '__main__':
args = parse_args()
if args.style == 'xiaochu':
# Xiaochu Style
colorstyle = xiaochu_style
elif args.style == 'chunhua':
# Chunhua Style
colorstyle = chunhua_style
else:
raise Exception('Invalid color style')
save_path = args.save_path
img_path = args.image_path
if not os.path.exists(save_path):
try:
os.makedirs(save_path)
except Exception:
print('Fail to make {}'.format(save_path))
with open(args.prediction) as f:
data = json.load(f)
gt_file = args.gt_anno
plot(data, gt_file, img_path, save_path, colorstyle.link_pairs, colorstyle.ring_color, save=True)
|