File size: 7,040 Bytes
5209465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import logging
import time
from collections import namedtuple
from pathlib import Path

import torch
import torch.optim as optim
import torch.nn as nn


def create_logger(cfg, cfg_name, phase='train'):
    root_output_dir = Path(cfg.OUTPUT_DIR)
    # set up logger
    if not root_output_dir.exists():
        print('=> creating {}'.format(root_output_dir))
        root_output_dir.mkdir()

    dataset = cfg.DATASET.DATASET + '_' + cfg.DATASET.HYBRID_JOINTS_TYPE \
        if cfg.DATASET.HYBRID_JOINTS_TYPE else cfg.DATASET.DATASET
    dataset = dataset.replace(':', '_')
    model = cfg.MODEL.NAME
    cfg_name = os.path.basename(cfg_name).split('.')[0]

    final_output_dir = root_output_dir / dataset / model / cfg_name

    print('=> creating {}'.format(final_output_dir))
    final_output_dir.mkdir(parents=True, exist_ok=True)

    time_str = time.strftime('%Y-%m-%d-%H-%M')
    log_file = '{}_{}_{}.log'.format(cfg_name, time_str, phase)
    final_log_file = final_output_dir / log_file
    head = '%(asctime)-15s %(message)s'
    logging.basicConfig(filename=str(final_log_file),
                        format=head)
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    console = logging.StreamHandler()
    logging.getLogger('').addHandler(console)

    tensorboard_log_dir = Path(cfg.LOG_DIR) / dataset / model / \
        (cfg_name + '_' + time_str)

    print('=> creating {}'.format(tensorboard_log_dir))
    tensorboard_log_dir.mkdir(parents=True, exist_ok=True)

    return logger, str(final_output_dir), str(tensorboard_log_dir)


def get_optimizer(cfg, model):
    optimizer = None
    if cfg.TRAIN.OPTIMIZER == 'sgd':
        optimizer = optim.SGD(
            model.parameters(),
            lr=cfg.TRAIN.LR,
            momentum=cfg.TRAIN.MOMENTUM,
            weight_decay=cfg.TRAIN.WD,
            nesterov=cfg.TRAIN.NESTEROV
        )
    elif cfg.TRAIN.OPTIMIZER == 'adam':
        optimizer = optim.Adam(
            model.parameters(),
            lr=cfg.TRAIN.LR
        )

    return optimizer


def save_checkpoint(states, is_best, output_dir,
                    filename='checkpoint.pth'):
    torch.save(states, os.path.join(output_dir, filename))
    if is_best and 'state_dict' in states:
        torch.save(states['best_state_dict'],
                   os.path.join(output_dir, 'model_best.pth'))


def get_model_summary(model, *input_tensors, item_length=26, verbose=False):
    """
    :param model:
    :param input_tensors:
    :param item_length:
    :return:
    """

    summary = []

    ModuleDetails = namedtuple(
        "Layer", ["name", "input_size", "output_size", "num_parameters", "multiply_adds"])
    hooks = []
    layer_instances = {}

    def add_hooks(module):

        def hook(module, input, output):
            class_name = str(module.__class__.__name__)

            instance_index = 1
            if class_name not in layer_instances:
                layer_instances[class_name] = instance_index
            else:
                instance_index = layer_instances[class_name] + 1
                layer_instances[class_name] = instance_index

            layer_name = class_name + "_" + str(instance_index)

            params = 0

            if class_name.find("Conv") != -1 or class_name.find("BatchNorm") != -1 or \
               class_name.find("Linear") != -1:
                for param_ in module.parameters():
                    params += param_.view(-1).size(0)

            flops = "Not Available"
            if class_name.find("Conv") != -1 and hasattr(module, "weight"):
                flops = (
                    torch.prod(
                        torch.LongTensor(list(module.weight.data.size()))) *
                    torch.prod(
                        torch.LongTensor(list(output.size())[2:]))).item()
            elif isinstance(module, nn.Linear):
                flops = (torch.prod(torch.LongTensor(list(output.size()))) \
                         * input[0].size(1)).item()

            if isinstance(input[0], list):
                input = input[0]
            if isinstance(output, list):
                output = output[0]

            summary.append(
                ModuleDetails(
                    name=layer_name,
                    input_size=list(input[0].size()),
                    output_size=list(output.size()),
                    num_parameters=params,
                    multiply_adds=flops)
            )

        if not isinstance(module, nn.ModuleList) \
           and not isinstance(module, nn.Sequential) \
           and module != model:
            hooks.append(module.register_forward_hook(hook))

    model.eval()
    model.apply(add_hooks)

    space_len = item_length

    model(*input_tensors)
    for hook in hooks:
        hook.remove()

    details = ''
    if verbose:
        details = "Model Summary" + \
            os.linesep + \
            "Name{}Input Size{}Output Size{}Parameters{}Multiply Adds (Flops){}".format(
                ' ' * (space_len - len("Name")),
                ' ' * (space_len - len("Input Size")),
                ' ' * (space_len - len("Output Size")),
                ' ' * (space_len - len("Parameters")),
                ' ' * (space_len - len("Multiply Adds (Flops)"))) \
                + os.linesep + '-' * space_len * 5 + os.linesep

    params_sum = 0
    flops_sum = 0
    for layer in summary:
        params_sum += layer.num_parameters
        if layer.multiply_adds != "Not Available":
            flops_sum += layer.multiply_adds
        if verbose:
            details += "{}{}{}{}{}{}{}{}{}{}".format(
                layer.name,
                ' ' * (space_len - len(layer.name)),
                layer.input_size,
                ' ' * (space_len - len(str(layer.input_size))),
                layer.output_size,
                ' ' * (space_len - len(str(layer.output_size))),
                layer.num_parameters,
                ' ' * (space_len - len(str(layer.num_parameters))),
                layer.multiply_adds,
                ' ' * (space_len - len(str(layer.multiply_adds)))) \
                + os.linesep + '-' * space_len * 5 + os.linesep

    details += os.linesep \
        + "Total Parameters: {:,}".format(params_sum) \
        + os.linesep + '-' * space_len * 5 + os.linesep
    details += "Total Multiply Adds (For Convolution and Linear Layers only): {:,} GFLOPs".format(flops_sum/(1024**3)) \
        + os.linesep + '-' * space_len * 5 + os.linesep
    details += "Number of Layers" + os.linesep
    for layer in layer_instances:
        details += "{} : {} layers   ".format(layer, layer_instances[layer])

    return details