File size: 10,146 Bytes
5209465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import logging
import random

import cv2
import numpy as np
import torch
from torch.utils.data import Dataset

from utils.transforms import get_affine_transform
from utils.transforms import affine_transform
from utils.transforms import fliplr_joints


logger = logging.getLogger(__name__)


class JointsDataset(Dataset):
    def __init__(self, cfg, root, image_set, is_train, transform=None):
        self.num_joints = 0
        self.pixel_std = 200
        self.flip_pairs = []
        self.parent_ids = []

        self.is_train = is_train
        self.root = root
        self.image_set = image_set

        self.output_path = cfg.OUTPUT_DIR
        self.data_format = cfg.DATASET.DATA_FORMAT

        self.scale_factor = cfg.DATASET.SCALE_FACTOR
        self.rotation_factor = cfg.DATASET.ROT_FACTOR
        self.flip = cfg.DATASET.FLIP
        self.num_joints_half_body = cfg.DATASET.NUM_JOINTS_HALF_BODY
        self.prob_half_body = cfg.DATASET.PROB_HALF_BODY
        self.color_rgb = cfg.DATASET.COLOR_RGB

        self.target_type = cfg.MODEL.TARGET_TYPE
        self.image_size = np.array(cfg.MODEL.IMAGE_SIZE)
        self.heatmap_size = np.array(cfg.MODEL.HEATMAP_SIZE)
        self.sigma = cfg.MODEL.SIGMA
        self.use_different_joints_weight = cfg.LOSS.USE_DIFFERENT_JOINTS_WEIGHT
        self.joints_weight = 1

        self.transform = transform
        self.db = []

    def _get_db(self):
        raise NotImplementedError

    def evaluate(self, cfg, preds, output_dir, *args, **kwargs):
        raise NotImplementedError

    def half_body_transform(self, joints, joints_vis):
        upper_joints = []
        lower_joints = []
        for joint_id in range(self.num_joints):
            if joints_vis[joint_id][0] > 0:
                if joint_id in self.upper_body_ids:
                    upper_joints.append(joints[joint_id])
                else:
                    lower_joints.append(joints[joint_id])

        if np.random.randn() < 0.5 and len(upper_joints) > 2:
            selected_joints = upper_joints
        else:
            selected_joints = lower_joints \
                if len(lower_joints) > 2 else upper_joints

        if len(selected_joints) < 2:
            return None, None

        selected_joints = np.array(selected_joints, dtype=np.float32)
        center = selected_joints.mean(axis=0)[:2]

        left_top = np.amin(selected_joints, axis=0)
        right_bottom = np.amax(selected_joints, axis=0)

        w = right_bottom[0] - left_top[0]
        h = right_bottom[1] - left_top[1]

        if w > self.aspect_ratio * h:
            h = w * 1.0 / self.aspect_ratio
        elif w < self.aspect_ratio * h:
            w = h * self.aspect_ratio

        scale = np.array(
            [
                w * 1.0 / self.pixel_std,
                h * 1.0 / self.pixel_std
            ],
            dtype=np.float32
        )

        scale = scale * 1.5

        return center, scale

    def __len__(self,):
        return len(self.db)

    def __getitem__(self, idx):
        db_rec = copy.deepcopy(self.db[idx])

        image_file = db_rec['image']
        filename = db_rec['filename'] if 'filename' in db_rec else ''
        imgnum = db_rec['imgnum'] if 'imgnum' in db_rec else ''

        if self.data_format == 'zip':
            from utils import zipreader
            data_numpy = zipreader.imread(
                image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
            )
        else:
            data_numpy = cv2.imread(
                image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
            )

        if self.color_rgb:
            data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)

        if data_numpy is None:
            logger.error('=> fail to read {}'.format(image_file))
            raise ValueError('Fail to read {}'.format(image_file))

        joints = db_rec['joints_3d']
        joints_vis = db_rec['joints_3d_vis']

        c = db_rec['center']
        s = db_rec['scale']
        score = db_rec['score'] if 'score' in db_rec else 1
        r = 0

        if self.is_train:
            if (np.sum(joints_vis[:, 0]) > self.num_joints_half_body
                and np.random.rand() < self.prob_half_body):
                c_half_body, s_half_body = self.half_body_transform(
                    joints, joints_vis
                )

                if c_half_body is not None and s_half_body is not None:
                    c, s = c_half_body, s_half_body

            sf = self.scale_factor
            rf = self.rotation_factor
            s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
            r = np.clip(np.random.randn()*rf, -rf*2, rf*2) \
                if random.random() <= 0.6 else 0

            if self.flip and random.random() <= 0.5:
                data_numpy = data_numpy[:, ::-1, :]
                joints, joints_vis = fliplr_joints(
                    joints, joints_vis, data_numpy.shape[1], self.flip_pairs)
                c[0] = data_numpy.shape[1] - c[0] - 1

        trans = get_affine_transform(c, s, r, self.image_size)
        input = cv2.warpAffine(
            data_numpy,
            trans,
            (int(self.image_size[0]), int(self.image_size[1])),
            flags=cv2.INTER_LINEAR)

        if self.transform:
            input = self.transform(input)

        for i in range(self.num_joints):
            if joints_vis[i, 0] > 0.0:
                joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)

        target, target_weight = self.generate_target(joints, joints_vis)

        target = torch.from_numpy(target)
        target_weight = torch.from_numpy(target_weight)

        meta = {
            'image': image_file,
            'filename': filename,
            'imgnum': imgnum,
            'joints': joints,
            'joints_vis': joints_vis,
            'center': c,
            'scale': s,
            'rotation': r,
            'score': score
        }

        return input, target, target_weight, meta

    def select_data(self, db):
        db_selected = []
        for rec in db:
            num_vis = 0
            joints_x = 0.0
            joints_y = 0.0
            for joint, joint_vis in zip(
                    rec['joints_3d'], rec['joints_3d_vis']):
                if joint_vis[0] <= 0:
                    continue
                num_vis += 1

                joints_x += joint[0]
                joints_y += joint[1]
            if num_vis == 0:
                continue

            joints_x, joints_y = joints_x / num_vis, joints_y / num_vis

            area = rec['scale'][0] * rec['scale'][1] * (self.pixel_std**2)
            joints_center = np.array([joints_x, joints_y])
            bbox_center = np.array(rec['center'])
            diff_norm2 = np.linalg.norm((joints_center-bbox_center), 2)
            ks = np.exp(-1.0*(diff_norm2**2) / ((0.2)**2*2.0*area))

            metric = (0.2 / 16) * num_vis + 0.45 - 0.2 / 16
            if ks > metric:
                db_selected.append(rec)

        logger.info('=> num db: {}'.format(len(db)))
        logger.info('=> num selected db: {}'.format(len(db_selected)))
        return db_selected

    def generate_target(self, joints, joints_vis):
        '''
        :param joints:  [num_joints, 3]
        :param joints_vis: [num_joints, 3]
        :return: target, target_weight(1: visible, 0: invisible)
        '''
        target_weight = np.ones((self.num_joints, 1), dtype=np.float32)
        target_weight[:, 0] = joints_vis[:, 0]

        assert self.target_type == 'gaussian', \
            'Only support gaussian map now!'

        if self.target_type == 'gaussian':
            target = np.zeros((self.num_joints,
                               self.heatmap_size[1],
                               self.heatmap_size[0]),
                              dtype=np.float32)

            tmp_size = self.sigma * 3

            for joint_id in range(self.num_joints):
                feat_stride = self.image_size / self.heatmap_size
                mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
                mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
                # Check that any part of the gaussian is in-bounds
                ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
                br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
                if ul[0] >= self.heatmap_size[0] or ul[1] >= self.heatmap_size[1] \
                        or br[0] < 0 or br[1] < 0:
                    # If not, just return the image as is
                    target_weight[joint_id] = 0
                    continue

                # # Generate gaussian
                size = 2 * tmp_size + 1
                x = np.arange(0, size, 1, np.float32)
                y = x[:, np.newaxis]
                x0 = y0 = size // 2
                # The gaussian is not normalized, we want the center value to equal 1
                g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * self.sigma ** 2))

                # Usable gaussian range
                g_x = max(0, -ul[0]), min(br[0], self.heatmap_size[0]) - ul[0]
                g_y = max(0, -ul[1]), min(br[1], self.heatmap_size[1]) - ul[1]
                # Image range
                img_x = max(0, ul[0]), min(br[0], self.heatmap_size[0])
                img_y = max(0, ul[1]), min(br[1], self.heatmap_size[1])

                v = target_weight[joint_id]
                if v > 0.5:
                    target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
                        g[g_y[0]:g_y[1], g_x[0]:g_x[1]]

        if self.use_different_joints_weight:
            target_weight = np.multiply(target_weight, self.joints_weight)

        return target, target_weight