File size: 9,310 Bytes
5209465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
 
import time
import logging
import os

import numpy as np
import torch

from core.evaluate import accuracy
from core.inference import get_final_preds
from utils.transforms import flip_back
from utils.vis import save_debug_images


logger = logging.getLogger(__name__)


def train(config, train_loader, model, criterion, optimizer, epoch,
          output_dir, tb_log_dir, writer_dict):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acc = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target, target_weight, meta) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # compute output
        outputs = model(input)

        target = target.cuda(non_blocking=True)
        target_weight = target_weight.cuda(non_blocking=True)

        if isinstance(outputs, list):
            loss = criterion(outputs[0], target, target_weight)
            for output in outputs[1:]:
                loss += criterion(output, target, target_weight)
        else:
            output = outputs
            loss = criterion(output, target, target_weight)

        # loss = criterion(output, target, target_weight)

        # compute gradient and do update step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure accuracy and record loss
        losses.update(loss.item(), input.size(0))

        _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(),
                                         target.detach().cpu().numpy())
        acc.update(avg_acc, cnt)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % config.PRINT_FREQ == 0:
            msg = 'Epoch: [{0}][{1}/{2}]\t' \
                  'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \
                  'Speed {speed:.1f} samples/s\t' \
                  'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \
                  'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \
                  'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
                      epoch, i, len(train_loader), batch_time=batch_time,
                      speed=input.size(0)/batch_time.val,
                      data_time=data_time, loss=losses, acc=acc)
            logger.info(msg)

            writer = writer_dict['writer']
            global_steps = writer_dict['train_global_steps']
            writer.add_scalar('train_loss', losses.val, global_steps)
            writer.add_scalar('train_acc', acc.val, global_steps)
            writer_dict['train_global_steps'] = global_steps + 1

            prefix = '{}_{}'.format(os.path.join(output_dir, 'train'), i)
            save_debug_images(config, input, meta, target, pred*4, output,
                              prefix)


def validate(config, val_loader, val_dataset, model, criterion, output_dir,
             tb_log_dir, writer_dict=None):
    batch_time = AverageMeter()
    losses = AverageMeter()
    acc = AverageMeter()

    # switch to evaluate mode
    model.eval()

    num_samples = len(val_dataset)
    all_preds = np.zeros(
        (num_samples, config.MODEL.NUM_JOINTS, 3),
        dtype=np.float32
    )
    all_boxes = np.zeros((num_samples, 6))
    image_path = []
    filenames = []
    imgnums = []
    idx = 0
    with torch.no_grad():
        end = time.time()
        for i, (input, target, target_weight, meta) in enumerate(val_loader):
            # compute output
            outputs = model(input)
            if isinstance(outputs, list):
                output = outputs[-1]
            else:
                output = outputs

            if config.TEST.FLIP_TEST:
                input_flipped = input.flip(3)
                outputs_flipped = model(input_flipped)

                if isinstance(outputs_flipped, list):
                    output_flipped = outputs_flipped[-1]
                else:
                    output_flipped = outputs_flipped

                output_flipped = flip_back(output_flipped.cpu().numpy(),
                                           val_dataset.flip_pairs)
                output_flipped = torch.from_numpy(output_flipped.copy()).cuda()


                # feature is not aligned, shift flipped heatmap for higher accuracy
                if config.TEST.SHIFT_HEATMAP:
                    output_flipped[:, :, :, 1:] = \
                        output_flipped.clone()[:, :, :, 0:-1]

                output = (output + output_flipped) * 0.5

            target = target.cuda(non_blocking=True)
            target_weight = target_weight.cuda(non_blocking=True)

            loss = criterion(output, target, target_weight)

            num_images = input.size(0)
            # measure accuracy and record loss
            losses.update(loss.item(), num_images)
            _, avg_acc, cnt, pred = accuracy(output.cpu().numpy(),
                                             target.cpu().numpy())

            acc.update(avg_acc, cnt)

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            c = meta['center'].numpy()
            s = meta['scale'].numpy()
            score = meta['score'].numpy()

            preds, maxvals = get_final_preds(
                config, output.clone().cpu().numpy(), c, s)

            all_preds[idx:idx + num_images, :, 0:2] = preds[:, :, 0:2]
            all_preds[idx:idx + num_images, :, 2:3] = maxvals
            # double check this all_boxes parts
            all_boxes[idx:idx + num_images, 0:2] = c[:, 0:2]
            all_boxes[idx:idx + num_images, 2:4] = s[:, 0:2]
            all_boxes[idx:idx + num_images, 4] = np.prod(s*200, 1)
            all_boxes[idx:idx + num_images, 5] = score
            image_path.extend(meta['image'])

            idx += num_images

            if i % config.PRINT_FREQ == 0:
                msg = 'Test: [{0}/{1}]\t' \
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t' \
                      'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format(
                          i, len(val_loader), batch_time=batch_time,
                          loss=losses, acc=acc)
                logger.info(msg)

                prefix = '{}_{}'.format(
                    os.path.join(output_dir, 'val'), i
                )
                save_debug_images(config, input, meta, target, pred*4, output,
                                  prefix)

        name_values, perf_indicator = val_dataset.evaluate(
            config, all_preds, output_dir, all_boxes, image_path,
            filenames, imgnums
        )

        model_name = config.MODEL.NAME
        if isinstance(name_values, list):
            for name_value in name_values:
                _print_name_value(name_value, model_name)
        else:
            _print_name_value(name_values, model_name)

        if writer_dict:
            writer = writer_dict['writer']
            global_steps = writer_dict['valid_global_steps']
            writer.add_scalar(
                'valid_loss',
                losses.avg,
                global_steps
            )
            writer.add_scalar(
                'valid_acc',
                acc.avg,
                global_steps
            )
            if isinstance(name_values, list):
                for name_value in name_values:
                    writer.add_scalars(
                        'valid',
                        dict(name_value),
                        global_steps
                    )
            else:
                writer.add_scalars(
                    'valid',
                    dict(name_values),
                    global_steps
                )
            writer_dict['valid_global_steps'] = global_steps + 1

    return perf_indicator


# markdown format output
def _print_name_value(name_value, full_arch_name):
    names = name_value.keys()
    values = name_value.values()
    num_values = len(name_value)
    logger.info(
        '| Arch ' +
        ' '.join(['| {}'.format(name) for name in names]) +
        ' |'
    )
    logger.info('|---' * (num_values+1) + '|')

    if len(full_arch_name) > 15:
        full_arch_name = full_arch_name[:8] + '...'
    logger.info(
        '| ' + full_arch_name + ' ' +
        ' '.join(['| {:.3f}'.format(value) for value in values]) +
         ' |'
    )


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count if self.count != 0 else 0