File size: 10,863 Bytes
07d7c23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# Copyright (c) Facebook, Inc. and its affiliates.
import io
import tempfile
import unittest
from contextlib import ExitStack
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from detectron2.utils import comm
from densepose.evaluation.tensor_storage import (
SingleProcessFileTensorStorage,
SingleProcessRamTensorStorage,
SizeData,
storage_gather,
)
class TestSingleProcessRamTensorStorage(unittest.TestCase):
def test_read_write_1(self):
schema = {
"tf": SizeData(dtype="float32", shape=(112, 112)),
"ti": SizeData(dtype="int32", shape=(4, 64, 64)),
}
# generate data which corresponds to the schema
data_elts = []
torch.manual_seed(23)
for _i in range(3):
data_elt = {
"tf": torch.rand((112, 112), dtype=torch.float32),
"ti": (torch.rand(4, 64, 64) * 1000).to(dtype=torch.int32),
}
data_elts.append(data_elt)
storage = SingleProcessRamTensorStorage(schema, io.BytesIO())
# write data to the storage
for i in range(3):
record_id = storage.put(data_elts[i])
self.assertEqual(record_id, i)
# read data from the storage
for i in range(3):
record = storage.get(i)
self.assertEqual(len(record), len(schema))
for field_name in schema:
self.assertTrue(field_name in record)
self.assertEqual(data_elts[i][field_name].shape, record[field_name].shape)
self.assertEqual(data_elts[i][field_name].dtype, record[field_name].dtype)
self.assertTrue(torch.allclose(data_elts[i][field_name], record[field_name]))
class TestSingleProcessFileTensorStorage(unittest.TestCase):
def test_read_write_1(self):
schema = {
"tf": SizeData(dtype="float32", shape=(112, 112)),
"ti": SizeData(dtype="int32", shape=(4, 64, 64)),
}
# generate data which corresponds to the schema
data_elts = []
torch.manual_seed(23)
for _i in range(3):
data_elt = {
"tf": torch.rand((112, 112), dtype=torch.float32),
"ti": (torch.rand(4, 64, 64) * 1000).to(dtype=torch.int32),
}
data_elts.append(data_elt)
# WARNING: opens the file several times! may not work on all platforms
with tempfile.NamedTemporaryFile() as hFile:
storage = SingleProcessFileTensorStorage(schema, hFile.name, "wb")
# write data to the storage
for i in range(3):
record_id = storage.put(data_elts[i])
self.assertEqual(record_id, i)
hFile.seek(0)
storage = SingleProcessFileTensorStorage(schema, hFile.name, "rb")
# read data from the storage
for i in range(3):
record = storage.get(i)
self.assertEqual(len(record), len(schema))
for field_name in schema:
self.assertTrue(field_name in record)
self.assertEqual(data_elts[i][field_name].shape, record[field_name].shape)
self.assertEqual(data_elts[i][field_name].dtype, record[field_name].dtype)
self.assertTrue(torch.allclose(data_elts[i][field_name], record[field_name]))
def _find_free_port():
"""
Copied from detectron2/engine/launch.py
"""
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def launch(main_func, nprocs, args=()):
port = _find_free_port()
dist_url = f"tcp://127.0.0.1:{port}"
# dist_url = "env://"
mp.spawn(
distributed_worker, nprocs=nprocs, args=(main_func, nprocs, dist_url, args), daemon=False
)
def distributed_worker(local_rank, main_func, nprocs, dist_url, args):
dist.init_process_group(
backend="gloo", init_method=dist_url, world_size=nprocs, rank=local_rank
)
comm.synchronize()
assert comm._LOCAL_PROCESS_GROUP is None
pg = dist.new_group(list(range(nprocs)))
comm._LOCAL_PROCESS_GROUP = pg
main_func(*args)
def ram_read_write_worker():
schema = {
"tf": SizeData(dtype="float32", shape=(112, 112)),
"ti": SizeData(dtype="int32", shape=(4, 64, 64)),
}
storage = SingleProcessRamTensorStorage(schema, io.BytesIO())
world_size = comm.get_world_size()
rank = comm.get_rank()
data_elts = []
# prepare different number of tensors in different processes
for i in range(rank + 1):
data_elt = {
"tf": torch.ones((112, 112), dtype=torch.float32) * (rank + i * world_size),
"ti": torch.ones((4, 64, 64), dtype=torch.int32) * (rank + i * world_size),
}
data_elts.append(data_elt)
# write data to the single process storage
for i in range(rank + 1):
record_id = storage.put(data_elts[i])
assert record_id == i, f"Process {rank}: record ID {record_id}, expected {i}"
comm.synchronize()
# gather all data in process rank 0
multi_storage = storage_gather(storage)
if rank != 0:
return
# read and check data from the multiprocess storage
for j in range(world_size):
for i in range(j):
record = multi_storage.get(j, i)
record_gt = {
"tf": torch.ones((112, 112), dtype=torch.float32) * (j + i * world_size),
"ti": torch.ones((4, 64, 64), dtype=torch.int32) * (j + i * world_size),
}
assert len(record) == len(schema), (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"expected {len(schema)} fields in the record, got {len(record)}"
)
for field_name in schema:
assert field_name in record, (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name} not in the record"
)
assert record_gt[field_name].shape == record[field_name].shape, (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name}, expected shape {record_gt[field_name].shape} "
f"got {record[field_name].shape}"
)
assert record_gt[field_name].dtype == record[field_name].dtype, (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name}, expected dtype {record_gt[field_name].dtype} "
f"got {record[field_name].dtype}"
)
assert torch.allclose(record_gt[field_name], record[field_name]), (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name}, tensors are not close enough:"
f"L-inf {(record_gt[field_name]-record[field_name]).abs_().max()} "
f"L1 {(record_gt[field_name]-record[field_name]).abs_().sum()} "
)
def file_read_write_worker(rank_to_fpath):
schema = {
"tf": SizeData(dtype="float32", shape=(112, 112)),
"ti": SizeData(dtype="int32", shape=(4, 64, 64)),
}
world_size = comm.get_world_size()
rank = comm.get_rank()
storage = SingleProcessFileTensorStorage(schema, rank_to_fpath[rank], "wb")
data_elts = []
# prepare different number of tensors in different processes
for i in range(rank + 1):
data_elt = {
"tf": torch.ones((112, 112), dtype=torch.float32) * (rank + i * world_size),
"ti": torch.ones((4, 64, 64), dtype=torch.int32) * (rank + i * world_size),
}
data_elts.append(data_elt)
# write data to the single process storage
for i in range(rank + 1):
record_id = storage.put(data_elts[i])
assert record_id == i, f"Process {rank}: record ID {record_id}, expected {i}"
comm.synchronize()
# gather all data in process rank 0
multi_storage = storage_gather(storage)
if rank != 0:
return
# read and check data from the multiprocess storage
for j in range(world_size):
for i in range(j):
record = multi_storage.get(j, i)
record_gt = {
"tf": torch.ones((112, 112), dtype=torch.float32) * (j + i * world_size),
"ti": torch.ones((4, 64, 64), dtype=torch.int32) * (j + i * world_size),
}
assert len(record) == len(schema), (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"expected {len(schema)} fields in the record, got {len(record)}"
)
for field_name in schema:
assert field_name in record, (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name} not in the record"
)
assert record_gt[field_name].shape == record[field_name].shape, (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name}, expected shape {record_gt[field_name].shape} "
f"got {record[field_name].shape}"
)
assert record_gt[field_name].dtype == record[field_name].dtype, (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name}, expected dtype {record_gt[field_name].dtype} "
f"got {record[field_name].dtype}"
)
assert torch.allclose(record_gt[field_name], record[field_name]), (
f"Process {rank}: multi storage record, rank {j}, id {i}: "
f"field {field_name}, tensors are not close enough:"
f"L-inf {(record_gt[field_name]-record[field_name]).abs_().max()} "
f"L1 {(record_gt[field_name]-record[field_name]).abs_().sum()} "
)
class TestMultiProcessRamTensorStorage(unittest.TestCase):
def test_read_write_1(self):
launch(ram_read_write_worker, 8)
class TestMultiProcessFileTensorStorage(unittest.TestCase):
def test_read_write_1(self):
with ExitStack() as stack:
# WARNING: opens the files several times! may not work on all platforms
rank_to_fpath = {
i: stack.enter_context(tempfile.NamedTemporaryFile()).name for i in range(8)
}
launch(file_read_write_worker, 8, (rank_to_fpath,))
|