File size: 8,664 Bytes
07d7c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import unittest
import torch

from detectron2.structures import Boxes, BoxMode, Instances

from densepose.modeling.losses.embed_utils import CseAnnotationsAccumulator
from densepose.structures import DensePoseDataRelative, DensePoseList


class TestCseAnnotationsAccumulator(unittest.TestCase):
    def test_cse_annotations_accumulator_nodp(self):
        instances_lst = [
            self._create_instances_nodp(),
        ]
        self._test_template(instances_lst)

    def test_cse_annotations_accumulator_sparsedp(self):
        instances_lst = [
            self._create_instances_sparsedp(),
        ]
        self._test_template(instances_lst)

    def test_cse_annotations_accumulator_fulldp(self):
        instances_lst = [
            self._create_instances_fulldp(),
        ]
        self._test_template(instances_lst)

    def test_cse_annotations_accumulator_combined(self):
        instances_lst = [
            self._create_instances_nodp(),
            self._create_instances_sparsedp(),
            self._create_instances_fulldp(),
        ]
        self._test_template(instances_lst)

    def _test_template(self, instances_lst):
        acc = CseAnnotationsAccumulator()
        for instances in instances_lst:
            acc.accumulate(instances)
        packed_anns = acc.pack()
        self._check_correspondence(packed_anns, instances_lst)

    def _create_instances_nodp(self):
        image_shape = (480, 640)
        instances = Instances(image_shape)
        instances.gt_boxes = Boxes(
            torch.as_tensor(
                [
                    [40.0, 40.0, 140.0, 140.0],
                    [160.0, 160.0, 270.0, 270.0],
                    [40.0, 160.0, 160.0, 280.0],
                ]
            )
        )
        instances.proposal_boxes = Boxes(
            torch.as_tensor(
                [
                    [41.0, 39.0, 142.0, 138.0],
                    [161.0, 159.0, 272.0, 268.0],
                    [41.0, 159.0, 162.0, 278.0],
                ]
            )
        )
        # do not add gt_densepose
        return instances

    def _create_instances_sparsedp(self):
        image_shape = (540, 720)
        instances = Instances(image_shape)
        instances.gt_boxes = Boxes(
            torch.as_tensor(
                [
                    [50.0, 50.0, 130.0, 130.0],
                    [150.0, 150.0, 240.0, 240.0],
                    [50.0, 150.0, 230.0, 330.0],
                ]
            )
        )
        instances.proposal_boxes = Boxes(
            torch.as_tensor(
                [
                    [49.0, 51.0, 131.0, 129.0],
                    [151.0, 149.0, 241.0, 239.0],
                    [51.0, 149.0, 232.0, 329.0],
                ]
            )
        )
        instances.gt_densepose = DensePoseList(
            [
                None,
                self._create_dp_data(
                    {
                        "dp_x": [81.69, 153.47, 151.00],
                        "dp_y": [162.24, 128.71, 113.81],
                        "dp_vertex": [0, 1, 2],
                        "ref_model": "zebra_5002",
                        "dp_masks": [],
                    },
                    {"c": (166, 133), "r": 64},
                ),
                None,
            ],
            instances.gt_boxes,
            image_shape,
        )
        return instances

    def _create_instances_fulldp(self):
        image_shape = (680, 840)
        instances = Instances(image_shape)
        instances.gt_boxes = Boxes(
            torch.as_tensor(
                [
                    [65.0, 55.0, 165.0, 155.0],
                    [170.0, 175.0, 275.0, 280.0],
                    [55.0, 165.0, 165.0, 275.0],
                ]
            )
        )
        instances.proposal_boxes = Boxes(
            torch.as_tensor(
                [
                    [66.0, 54.0, 166.0, 154.0],
                    [171.0, 174.0, 276.0, 279.0],
                    [56.0, 164.0, 166.0, 274.0],
                ]
            )
        )
        instances.gt_densepose = DensePoseList(
            [
                self._create_dp_data(
                    {
                        "dp_x": [149.99, 198.62, 157.59],
                        "dp_y": [170.74, 197.73, 123.12],
                        "dp_vertex": [3, 4, 5],
                        "ref_model": "cat_5001",
                        "dp_masks": [],
                    },
                    {"c": (100, 100), "r": 50},
                ),
                self._create_dp_data(
                    {
                        "dp_x": [234.53, 116.72, 71.66],
                        "dp_y": [107.53, 11.31, 142.32],
                        "dp_vertex": [6, 7, 8],
                        "ref_model": "dog_5002",
                        "dp_masks": [],
                    },
                    {"c": (200, 150), "r": 40},
                ),
                self._create_dp_data(
                    {
                        "dp_x": [225.54, 202.61, 135.90],
                        "dp_y": [167.46, 181.00, 211.47],
                        "dp_vertex": [9, 10, 11],
                        "ref_model": "elephant_5002",
                        "dp_masks": [],
                    },
                    {"c": (100, 200), "r": 45},
                ),
            ],
            instances.gt_boxes,
            image_shape,
        )
        return instances

    def _create_dp_data(self, anns, blob_def=None):
        dp_data = DensePoseDataRelative(anns)
        if blob_def is not None:
            dp_data.segm[
                blob_def["c"][0] - blob_def["r"] : blob_def["c"][0] + blob_def["r"],
                blob_def["c"][1] - blob_def["r"] : blob_def["c"][1] + blob_def["r"],
            ] = 1
        return dp_data

    def _check_correspondence(self, packed_anns, instances_lst):
        instance_idx = 0
        data_idx = 0
        pt_offset = 0
        if packed_anns is not None:
            bbox_xyxy_gt = BoxMode.convert(
                packed_anns.bbox_xywh_gt.clone(), BoxMode.XYWH_ABS, BoxMode.XYXY_ABS
            )
            bbox_xyxy_est = BoxMode.convert(
                packed_anns.bbox_xywh_est.clone(), BoxMode.XYWH_ABS, BoxMode.XYXY_ABS
            )
        for instances in instances_lst:
            if not hasattr(instances, "gt_densepose"):
                instance_idx += len(instances)
                continue
            for i, dp_data in enumerate(instances.gt_densepose):
                if dp_data is None:
                    instance_idx += 1
                    continue
                n_pts = len(dp_data.x)
                self.assertTrue(
                    torch.allclose(dp_data.x, packed_anns.x_gt[pt_offset : pt_offset + n_pts])
                )
                self.assertTrue(
                    torch.allclose(dp_data.y, packed_anns.y_gt[pt_offset : pt_offset + n_pts])
                )
                self.assertTrue(torch.allclose(dp_data.segm, packed_anns.coarse_segm_gt[data_idx]))
                self.assertTrue(
                    torch.allclose(
                        torch.ones(n_pts, dtype=torch.long) * dp_data.mesh_id,
                        packed_anns.vertex_mesh_ids_gt[pt_offset : pt_offset + n_pts],
                    )
                )
                self.assertTrue(
                    torch.allclose(
                        dp_data.vertex_ids, packed_anns.vertex_ids_gt[pt_offset : pt_offset + n_pts]
                    )
                )
                self.assertTrue(
                    torch.allclose(instances.gt_boxes.tensor[i], bbox_xyxy_gt[data_idx])
                )
                self.assertTrue(
                    torch.allclose(instances.proposal_boxes.tensor[i], bbox_xyxy_est[data_idx])
                )
                self.assertTrue(
                    torch.allclose(
                        torch.ones(n_pts, dtype=torch.long) * data_idx,
                        packed_anns.point_bbox_with_dp_indices[pt_offset : pt_offset + n_pts],
                    )
                )
                self.assertTrue(
                    torch.allclose(
                        torch.ones(n_pts, dtype=torch.long) * instance_idx,
                        packed_anns.point_bbox_indices[pt_offset : pt_offset + n_pts],
                    )
                )
                self.assertEqual(instance_idx, packed_anns.bbox_indices[data_idx])
                pt_offset += n_pts
                instance_idx += 1
                data_idx += 1
        if data_idx == 0:
            self.assertIsNone(packed_anns)