File size: 10,388 Bytes
07d7c23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import numpy as np
import unittest
from typing import Dict
import torch
from detectron2.config import CfgNode as CfgNode_
from detectron2.config import instantiate
from detectron2.structures import Boxes, Instances
from detectron2.tracking.base_tracker import build_tracker_head
from detectron2.tracking.vanilla_hungarian_bbox_iou_tracker import ( # noqa
VanillaHungarianBBoxIOUTracker,
)
class TestVanillaHungarianBBoxIOUTracker(unittest.TestCase):
def setUp(self):
self._img_size = np.array([600, 800])
self._prev_boxes = np.array(
[
[101, 101, 200, 200],
[301, 301, 450, 450],
]
).astype(np.float32)
self._prev_scores = np.array([0.9, 0.9])
self._prev_classes = np.array([1, 1])
self._prev_masks = np.ones((2, 600, 800)).astype("uint8")
self._curr_boxes = np.array(
[
[302, 303, 451, 452],
[101, 102, 201, 203],
]
).astype(np.float32)
self._curr_scores = np.array([0.95, 0.85])
self._curr_classes = np.array([1, 1])
self._curr_masks = np.ones((2, 600, 800)).astype("uint8")
self._prev_instances = {
"image_size": self._img_size,
"pred_boxes": self._prev_boxes,
"scores": self._prev_scores,
"pred_classes": self._prev_classes,
"pred_masks": self._prev_masks,
}
self._prev_instances = self._convertDictPredictionToInstance(self._prev_instances)
self._curr_instances = {
"image_size": self._img_size,
"pred_boxes": self._curr_boxes,
"scores": self._curr_scores,
"pred_classes": self._curr_classes,
"pred_masks": self._curr_masks,
}
self._curr_instances = self._convertDictPredictionToInstance(self._curr_instances)
self._max_num_instances = 10
self._max_lost_frame_count = 3
self._min_box_rel_dim = 0.02
self._min_instance_period = 1
self._track_iou_threshold = 0.5
def _convertDictPredictionToInstance(self, prediction: Dict) -> Instances:
"""
convert prediction from Dict to D2 Instances format
"""
res = Instances(
image_size=torch.IntTensor(prediction["image_size"]),
pred_boxes=Boxes(torch.FloatTensor(prediction["pred_boxes"])),
pred_masks=torch.IntTensor(prediction["pred_masks"]),
pred_classes=torch.IntTensor(prediction["pred_classes"]),
scores=torch.FloatTensor(prediction["scores"]),
)
return res
def test_init(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
self.assertTrue(tracker._video_height == self._img_size[0])
def test_from_config(self):
cfg = CfgNode_()
cfg.TRACKER_HEADS = CfgNode_()
cfg.TRACKER_HEADS.TRACKER_NAME = "VanillaHungarianBBoxIOUTracker"
cfg.TRACKER_HEADS.VIDEO_HEIGHT = int(self._img_size[0])
cfg.TRACKER_HEADS.VIDEO_WIDTH = int(self._img_size[1])
cfg.TRACKER_HEADS.MAX_NUM_INSTANCES = self._max_num_instances
cfg.TRACKER_HEADS.MAX_LOST_FRAME_COUNT = self._max_lost_frame_count
cfg.TRACKER_HEADS.MIN_BOX_REL_DIM = self._min_box_rel_dim
cfg.TRACKER_HEADS.MIN_INSTANCE_PERIOD = self._min_instance_period
cfg.TRACKER_HEADS.TRACK_IOU_THRESHOLD = self._track_iou_threshold
tracker = build_tracker_head(cfg)
self.assertTrue(tracker._video_height == self._img_size[0])
def test_initialize_extra_fields(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
instances = tracker._initialize_extra_fields(self._curr_instances)
self.assertTrue(instances.has("ID"))
self.assertTrue(instances.has("ID_period"))
self.assertTrue(instances.has("lost_frame_count"))
def test_process_matched_idx(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
prev_instances = tracker._initialize_extra_fields(self._prev_instances)
tracker._prev_instances = prev_instances
curr_instances = tracker._initialize_extra_fields(self._curr_instances)
matched_idx = np.array([0])
matched_prev_idx = np.array([1])
curr_instances = tracker._process_matched_idx(curr_instances, matched_idx, matched_prev_idx)
self.assertTrue(curr_instances.ID[0] == 1)
def test_process_unmatched_idx(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
prev_instances = tracker._initialize_extra_fields(self._prev_instances)
tracker._prev_instances = prev_instances
curr_instances = tracker._initialize_extra_fields(self._curr_instances)
matched_idx = np.array([0])
matched_prev_idx = np.array([1])
curr_instances = tracker._process_matched_idx(curr_instances, matched_idx, matched_prev_idx)
curr_instances = tracker._process_unmatched_idx(curr_instances, matched_idx)
self.assertTrue(curr_instances.ID[1] == 2)
def test_process_unmatched_prev_idx(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
prev_instances = tracker._initialize_extra_fields(self._prev_instances)
prev_instances.ID_period = [3, 3]
tracker._prev_instances = prev_instances
curr_instances = tracker._initialize_extra_fields(self._curr_instances)
matched_idx = np.array([0])
matched_prev_idx = np.array([1])
curr_instances = tracker._process_matched_idx(curr_instances, matched_idx, matched_prev_idx)
curr_instances = tracker._process_unmatched_idx(curr_instances, matched_idx)
curr_instances = tracker._process_unmatched_prev_idx(curr_instances, matched_prev_idx)
self.assertTrue(curr_instances.ID[2] == 0)
def test_assign_cost_matrix_values(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
pair1 = {"idx": 0, "prev_idx": 1}
pair2 = {"idx": 1, "prev_idx": 0}
bbox_pairs = [pair1, pair2]
cost_matrix = np.full((2, 2), np.inf)
target_matrix = copy.deepcopy(cost_matrix)
target_matrix[0, 1] = -1
target_matrix[1, 0] = -1
cost_matrix = tracker.assign_cost_matrix_values(cost_matrix, bbox_pairs)
self.assertTrue(np.allclose(cost_matrix, target_matrix))
def test_update(self):
cfg = {
"_target_": "detectron2.tracking.vanilla_hungarian_bbox_iou_tracker.VanillaHungarianBBoxIOUTracker", # noqa
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
_ = tracker.update(self._prev_instances)
curr_instances = tracker.update(self._curr_instances)
self.assertTrue(curr_instances.ID[0] == 1)
self.assertTrue(curr_instances.ID[1] == 0)
if __name__ == "__main__":
unittest.main()
|