Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import numpy as np | |
from typing import List, Dict, Tuple | |
import json | |
import os | |
from datetime import datetime | |
class GRPOTrainer: | |
def __init__(self): | |
self.model = None | |
self.ref_model = None | |
self.tokenizer = None | |
self.optimizer = None | |
self.training_history = [] | |
def load_model(self, model_name: str) -> str: | |
"""Load the model and tokenizer""" | |
try: | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
self.ref_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
# Set padding token | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
# Freeze reference model | |
for param in self.ref_model.parameters(): | |
param.requires_grad = False | |
return f"β Successfully loaded model: {model_name}" | |
except Exception as e: | |
return f"β Error loading model: {str(e)}" | |
def compute_rewards(self, prompts: List[str], responses: List[str]) -> torch.Tensor: | |
"""Compute rewards for responses (simplified reward function)""" | |
rewards = [] | |
for response in responses: | |
# Simple reward based on response length and diversity | |
length_reward = min(len(response.split()) / 50, 1.0) | |
unique_words = len(set(response.lower().split())) | |
diversity_reward = min(unique_words / 20, 1.0) | |
reward = (length_reward + diversity_reward) / 2 | |
rewards.append(reward) | |
return torch.tensor(rewards) | |
def compute_kl_penalty(self, logits: torch.Tensor, ref_logits: torch.Tensor) -> torch.Tensor: | |
"""Compute KL divergence penalty""" | |
probs = F.softmax(logits, dim=-1) | |
ref_probs = F.softmax(ref_logits, dim=-1) | |
kl = (probs * (probs / ref_probs).log()).sum(-1) | |
return kl.mean() | |
def grpo_step(self, prompts: List[str], beta: float = 0.1) -> Dict: | |
"""Perform one GRPO training step""" | |
if not self.model or not self.tokenizer: | |
return {"error": "Model not loaded"} | |
# Tokenize prompts | |
inputs = self.tokenizer(prompts, return_tensors="pt", padding=True, truncation=True) | |
# Generate responses | |
with torch.no_grad(): | |
outputs = self.model.generate( | |
inputs.input_ids, | |
max_length=inputs.input_ids.shape[1] + 50, | |
do_sample=True, | |
temperature=0.8, | |
pad_token_id=self.tokenizer.pad_token_id | |
) | |
# Decode responses | |
responses = [] | |
for output in outputs: | |
response = self.tokenizer.decode(output[inputs.input_ids.shape[1]:], skip_special_tokens=True) | |
responses.append(response) | |
# Compute rewards | |
rewards = self.compute_rewards(prompts, responses) | |
# Forward pass through both models | |
self.model.train() | |
model_outputs = self.model(inputs.input_ids) | |
ref_outputs = self.ref_model(inputs.input_ids) | |
# Compute KL penalty | |
kl_penalty = self.compute_kl_penalty(model_outputs.logits, ref_outputs.logits) | |
# Compute loss (simplified GRPO loss) | |
loss = -rewards.mean() + beta * kl_penalty | |
# Backward pass | |
if self.optimizer: | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
return { | |
"loss": loss.item(), | |
"reward": rewards.mean().item(), | |
"kl_penalty": kl_penalty.item(), | |
"responses": responses | |
} | |
def train(self, prompts: List[str], num_steps: int, lr: float, beta: float) -> str: | |
"""Run GRPO training""" | |
if not self.model: | |
return "β Please load a model first" | |
# Initialize optimizer | |
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr) | |
results = [] | |
for step in range(num_steps): | |
step_result = self.grpo_step(prompts, beta) | |
if "error" in step_result: | |
return f"β Error: {step_result['error']}" | |
result_str = f"Step {step + 1}/{num_steps} - Loss: {step_result['loss']:.4f}, Reward: {step_result['reward']:.4f}, KL: {step_result['kl_penalty']:.4f}" | |
results.append(result_str) | |
# Store training history | |
self.training_history.append({ | |
"step": step + 1, | |
"loss": step_result['loss'], | |
"reward": step_result['reward'], | |
"kl_penalty": step_result['kl_penalty'] | |
}) | |
return "\n".join(results) | |
def generate_response(self, prompt: str, max_length: int = 100, temperature: float = 0.8) -> str: | |
"""Generate a response using the trained model""" | |
if not self.model or not self.tokenizer: | |
return "β Please load a model first" | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = self.model.generate( | |
inputs.input_ids, | |
max_length=inputs.input_ids.shape[1] + max_length, | |
temperature=temperature, | |
do_sample=True, | |
pad_token_id=self.tokenizer.pad_token_id | |
) | |
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) | |
return response | |
def save_model(self, save_path: str) -> str: | |
"""Save the trained model""" | |
if not self.model: | |
return "β No model to save" | |
try: | |
self.model.save_pretrained(save_path) | |
self.tokenizer.save_pretrained(save_path) | |
# Save training history | |
with open(os.path.join(save_path, "training_history.json"), "w") as f: | |
json.dump(self.training_history, f) | |
return f"β Model saved to {save_path}" | |
except Exception as e: | |
return f"β Error saving model: {str(e)}" | |
# Initialize trainer | |
trainer = GRPOTrainer() | |
# Gradio interface | |
def load_model_interface(model_name): | |
return trainer.load_model(model_name) | |
def train_interface(prompts_text, num_steps, learning_rate, beta): | |
prompts = [p.strip() for p in prompts_text.split("\n") if p.strip()] | |
if not prompts: | |
return "β Please provide at least one prompt" | |
return trainer.train(prompts, int(num_steps), float(learning_rate), float(beta)) | |
def generate_interface(prompt, max_length, temperature): | |
return trainer.generate_response(prompt, int(max_length), float(temperature)) | |
def save_model_interface(save_path): | |
return trainer.save_model(save_path) | |
def get_training_history(): | |
if not trainer.training_history: | |
return "No training history available" | |
history_str = "Training History:\n" | |
history_str += "-" * 50 + "\n" | |
for entry in trainer.training_history[-10:]: # Show last 10 entries | |
history_str += f"Step {entry['step']}: Loss={entry['loss']:.4f}, Reward={entry['reward']:.4f}, KL={entry['kl_penalty']:.4f}\n" | |
return history_str | |
# Create Gradio interface | |
with gr.Blocks(title="GRPO Model Training") as app: | |
gr.Markdown("# π GRPO (Group Relative Policy Optimization) Training App") | |
gr.Markdown("Train language models using GRPO technique with this simple interface") | |
with gr.Tab("π§ Model Setup"): | |
with gr.Row(): | |
model_input = gr.Textbox( | |
label="Model Name", | |
value="Writer/Palmyra-56B-Instruct", | |
placeholder="Enter HuggingFace model name (e.g., Palmyra, Qwen, Llama)" | |
) | |
load_btn = gr.Button("Load Model", variant="primary") | |
model_status = gr.Textbox(label="Status", lines=2) | |
load_btn.click(load_model_interface, inputs=model_input, outputs=model_status) | |
with gr.Tab("π― Training"): | |
with gr.Row(): | |
with gr.Column(): | |
prompts_input = gr.Textbox( | |
label="Training Prompts (one per line)", | |
lines=5, | |
value="Tell me about artificial intelligence\nExplain quantum computing\nWhat is machine learning?", | |
placeholder="Enter your prompts here..." | |
) | |
with gr.Column(): | |
num_steps_input = gr.Slider( | |
label="Number of Training Steps", | |
minimum=1, | |
maximum=100, | |
value=10, | |
step=1 | |
) | |
lr_input = gr.Number( | |
label="Learning Rate", | |
value=1e-5, | |
step=1e-6 | |
) | |
beta_input = gr.Number( | |
label="KL Penalty Weight (Ξ²)", | |
value=0.1, | |
step=0.01 | |
) | |
train_btn = gr.Button("Start Training", variant="primary") | |
training_output = gr.Textbox(label="Training Progress", lines=10) | |
train_btn.click( | |
train_interface, | |
inputs=[prompts_input, num_steps_input, lr_input, beta_input], | |
outputs=training_output | |
) | |
with gr.Tab("π¬ Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
gen_prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt here...", | |
value="Tell me about" | |
) | |
max_length = gr.Slider( | |
label="Max Length", | |
minimum=10, | |
maximum=500, | |
value=100, | |
step=10 | |
) | |
temp_slider = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=2.0, | |
value=0.8, | |
step=0.1 | |
) | |
with gr.Column(): | |
gen_btn = gr.Button("Generate", variant="primary") | |
gen_output = gr.Textbox(label="Generated Response", lines=10) | |
gen_btn.click( | |
generate_interface, | |
inputs=[gen_prompt, max_length, temp_slider], | |
outputs=gen_output | |
) | |
with gr.Tab("πΎ Save Model"): | |
save_path_input = gr.Textbox( | |
label="Save Path", | |
value="./grpo_trained_model", | |
placeholder="Enter path to save the model" | |
) | |
save_btn = gr.Button("Save Model", variant="primary") | |
save_status = gr.Textbox(label="Save Status") | |
save_btn.click(save_model_interface, inputs=save_path_input, outputs=save_status) | |
with gr.Tab("π Training History"): | |
history_btn = gr.Button("Refresh History", variant="secondary") | |
history_output = gr.Textbox(label="Training History", lines=15) | |
history_btn.click(get_training_history, outputs=history_output) | |
gr.Markdown(""" | |
## π Instructions: | |
1. **Load Model**: Start by loading a pre-trained model from HuggingFace | |
2. **Training**: Add your prompts and configure training parameters | |
3. **Generation**: Test your trained model with custom prompts | |
4. **Save**: Save your fine-tuned model for later use | |
## β οΈ Note: | |
- This is a simplified GRPO implementation for demonstration | |
- For production use, consider more sophisticated reward functions | |
- GPU recommended for larger models | |
""") | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch(share=True) |