File size: 5,515 Bytes
60b53a6
 
33f0de1
6696db2
33f0de1
60b53a6
 
9787d82
33f0de1
ea35578
2759f98
33f0de1
 
19de71a
 
 
6696db2
 
 
 
 
 
 
 
 
60b53a6
 
 
33f0de1
 
 
60b53a6
 
33f0de1
bdd35f2
 
0c7cad3
 
 
 
 
 
bdd35f2
 
 
 
 
6696db2
33f0de1
 
6696db2
bdd35f2
 
 
33f0de1
 
bdd35f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7cad3
bdd35f2
 
 
 
 
 
 
 
 
 
0c7cad3
 
 
 
 
 
bdd35f2
 
 
33f0de1
 
 
 
 
 
 
 
 
 
 
 
9787d82
33f0de1
 
 
 
 
 
 
 
 
 
 
 
60b53a6
33f0de1
bdd35f2
 
 
33f0de1
19de71a
33f0de1
 
 
 
 
 
 
 
 
 
 
 
 
0c7cad3
33f0de1
 
0c7cad3
33f0de1
 
 
 
 
 
 
 
 
 
 
 
 
60b53a6
0c7cad3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import numpy as np

# Authentification
login(token=os.environ["HF_TOKEN"])

# Liste des modèles
models = [
    "meta-llama/Llama-2-13b-hf",
    "meta-llama/Llama-2-7b-hf",
    "meta-llama/Llama-2-70b-hf",
    "meta-llama/Meta-Llama-3-8B",
    "meta-llama/Llama-3.2-3B",
    "meta-llama/Llama-3.1-8B",
    "mistralai/Mistral-7B-v0.1",
    "mistralai/Mixtral-8x7B-v0.1",
    "mistralai/Mistral-7B-v0.3",
    "google/gemma-2-2b",
    "google/gemma-2-9b",
    "google/gemma-2-27b",
    "croissantllm/CroissantLLMBase"
]

# Variables globales
model = None
tokenizer = None

def load_model(model_name):
    global model, tokenizer
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name, 
            torch_dtype=torch.bfloat16, 
            device_map="auto", 
            attn_implementation="eager"
        )
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        return f"Modèle {model_name} chargé avec succès."
    except Exception as e:
        return f"Erreur lors du chargement du modèle : {str(e)}"

def generate_text(input_text, temperature, top_p, top_k):
    global model, tokenizer
    
    if model is None or tokenizer is None:
        return "Veuillez d'abord charger un modèle.", None, None

    inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
    
    try:
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=50,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                output_attentions=True,
                return_dict_in_generate=True,
                output_scores=True
            )
        
        generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
        
        if hasattr(outputs, 'scores') and outputs.scores:
            last_token_logits = outputs.scores[-1][0]
            probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
            top_k = 5
            top_probs, top_indices = torch.topk(probabilities, top_k)
            top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
            prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
            prob_plot = plot_probabilities(prob_data)
        else:
            prob_plot = None
        
        if hasattr(outputs, 'attentions') and outputs.attentions:
            attention_data = torch.mean(torch.stack(outputs.attentions), dim=(0, 1)).cpu().numpy()
            attention_plot = plot_attention(attention_data, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]))
        else:
            attention_plot = None
        
        return generated_text, attention_plot, prob_plot
    except Exception as e:
        return f"Erreur lors de la génération : {str(e)}", None, None

def plot_attention(attention, tokens):
    fig, ax = plt.subplots(figsize=(10, 10))
    im = ax.imshow(attention, cmap='viridis')
    ax.set_xticks(range(len(tokens)))
    ax.set_yticks(range(len(tokens)))
    ax.set_xticklabels(tokens, rotation=90)
    ax.set_yticklabels(tokens)
    plt.colorbar(im)
    plt.title("Carte d'attention")
    plt.tight_layout()
    return fig

def plot_probabilities(prob_data):
    words = list(prob_data.keys())
    probs = list(prob_data.values())
    
    fig, ax = plt.subplots(figsize=(10, 5))
    ax.bar(words, probs)
    ax.set_title("Probabilités des tokens suivants les plus probables")
    ax.set_xlabel("Tokens")
    ax.set_ylabel("Probabilité")
    plt.xticks(rotation=45)
    plt.tight_layout()
    return fig

def reset():
    global model, tokenizer
    model = None
    tokenizer = None
    return "", 1.0, 1.0, 50, None, None, None

with gr.Blocks() as demo:
    gr.Markdown("# Générateur de texte avec visualisation d'attention")
    
    with gr.Accordion("Sélection du modèle"):
        model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
        load_button = gr.Button("Charger le modèle")
        load_output = gr.Textbox(label="Statut du chargement")
    
    with gr.Row():
        temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
        top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
        top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
    
    input_text = gr.Textbox(label="Texte d'entrée", lines=3)
    generate_button = gr.Button("Générer")
    
    output_text = gr.Textbox(label="Texte généré", lines=5)
    
    with gr.Row():
        attention_plot = gr.Plot(label="Visualisation de l'attention")
        prob_plot = gr.Plot(label="Probabilités des tokens suivants")
    
    reset_button = gr.Button("Réinitialiser")
    
    load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
    generate_button.click(generate_text, 
                          inputs=[input_text, temperature, top_p, top_k], 
                          outputs=[output_text, attention_plot, prob_plot])
    reset_button.click(reset, 
                       outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, prob_plot])

if __name__ == "__main__":
    demo.launch()