Spaces:
Paused
Paused
File size: 5,515 Bytes
60b53a6 33f0de1 6696db2 33f0de1 60b53a6 9787d82 33f0de1 ea35578 2759f98 33f0de1 19de71a 6696db2 60b53a6 33f0de1 60b53a6 33f0de1 bdd35f2 0c7cad3 bdd35f2 6696db2 33f0de1 6696db2 bdd35f2 33f0de1 bdd35f2 0c7cad3 bdd35f2 0c7cad3 bdd35f2 33f0de1 9787d82 33f0de1 60b53a6 33f0de1 bdd35f2 33f0de1 19de71a 33f0de1 0c7cad3 33f0de1 0c7cad3 33f0de1 60b53a6 0c7cad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import numpy as np
# Authentification
login(token=os.environ["HF_TOKEN"])
# Liste des modèles
models = [
"meta-llama/Llama-2-13b-hf",
"meta-llama/Llama-2-7b-hf",
"meta-llama/Llama-2-70b-hf",
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Llama-3.2-3B",
"meta-llama/Llama-3.1-8B",
"mistralai/Mistral-7B-v0.1",
"mistralai/Mixtral-8x7B-v0.1",
"mistralai/Mistral-7B-v0.3",
"google/gemma-2-2b",
"google/gemma-2-9b",
"google/gemma-2-27b",
"croissantllm/CroissantLLMBase"
]
# Variables globales
model = None
tokenizer = None
def load_model(model_name):
global model, tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return f"Modèle {model_name} chargé avec succès."
except Exception as e:
return f"Erreur lors du chargement du modèle : {str(e)}"
def generate_text(input_text, temperature, top_p, top_k):
global model, tokenizer
if model is None or tokenizer is None:
return "Veuillez d'abord charger un modèle.", None, None
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
try:
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=temperature,
top_p=top_p,
top_k=top_k,
output_attentions=True,
return_dict_in_generate=True,
output_scores=True
)
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
if hasattr(outputs, 'scores') and outputs.scores:
last_token_logits = outputs.scores[-1][0]
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
top_k = 5
top_probs, top_indices = torch.topk(probabilities, top_k)
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
prob_plot = plot_probabilities(prob_data)
else:
prob_plot = None
if hasattr(outputs, 'attentions') and outputs.attentions:
attention_data = torch.mean(torch.stack(outputs.attentions), dim=(0, 1)).cpu().numpy()
attention_plot = plot_attention(attention_data, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]))
else:
attention_plot = None
return generated_text, attention_plot, prob_plot
except Exception as e:
return f"Erreur lors de la génération : {str(e)}", None, None
def plot_attention(attention, tokens):
fig, ax = plt.subplots(figsize=(10, 10))
im = ax.imshow(attention, cmap='viridis')
ax.set_xticks(range(len(tokens)))
ax.set_yticks(range(len(tokens)))
ax.set_xticklabels(tokens, rotation=90)
ax.set_yticklabels(tokens)
plt.colorbar(im)
plt.title("Carte d'attention")
plt.tight_layout()
return fig
def plot_probabilities(prob_data):
words = list(prob_data.keys())
probs = list(prob_data.values())
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(words, probs)
ax.set_title("Probabilités des tokens suivants les plus probables")
ax.set_xlabel("Tokens")
ax.set_ylabel("Probabilité")
plt.xticks(rotation=45)
plt.tight_layout()
return fig
def reset():
global model, tokenizer
model = None
tokenizer = None
return "", 1.0, 1.0, 50, None, None, None
with gr.Blocks() as demo:
gr.Markdown("# Générateur de texte avec visualisation d'attention")
with gr.Accordion("Sélection du modèle"):
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
load_button = gr.Button("Charger le modèle")
load_output = gr.Textbox(label="Statut du chargement")
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
generate_button = gr.Button("Générer")
output_text = gr.Textbox(label="Texte généré", lines=5)
with gr.Row():
attention_plot = gr.Plot(label="Visualisation de l'attention")
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
reset_button = gr.Button("Réinitialiser")
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
generate_button.click(generate_text,
inputs=[input_text, temperature, top_p, top_k],
outputs=[output_text, attention_plot, prob_plot])
reset_button.click(reset,
outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, prob_plot])
if __name__ == "__main__":
demo.launch()
|