import streamlit as st from gpt_researcher import GPTResearcher import asyncio import nest_asyncio import os from contextlib import contextmanager from io import StringIO import sys # Access secrets openai_api_key = st.secrets["OPENAI_API_KEY"] tavily_api_key = st.secrets["TAVILY_API_KEY"] # Apply the asyncio patch from nest_asyncio if required nest_asyncio.apply() # Set the document path environment variable os.environ['DOC_PATH'] = './local' # Path to the folder with documents # Constants REPORT_TYPE = "research_report" # Function to capture output to the standard output @contextmanager def st_capture(output_func): old_out = sys.stdout sys.stdout = StringIO() try: yield output_func(sys.stdout.getvalue()) finally: sys.stdout = old_out # Function to handle asynchronous calls def run_async(coroutine): loop = asyncio.get_event_loop() return loop.run_until_complete(coroutine) # Define the asynchronous function to fetch the report async def fetch_report(query, report_type): """ Fetch a research report based on the provided query and report type. Research is conducted on a local document. """ try: researcher = GPTResearcher(query=query, report_type=report_type, report_source='local') await researcher.conduct_research() return await researcher.write_report() except Exception as e: return f"Error during research: {str(e)}" # Streamlit interface st.title("Google Algo Leak Reporting Tool") # User input for the query using a text area query = st.text_area( "Enter your research query:", "Extract all the information about how the ranking for internal links works.", height=150 # Adjustable height ) # Placeholder for the progress expander progress_expander = st.expander("See research progress", expanded=True) progress_placeholder = progress_expander.empty() # Start the report generation process if st.button("Generate Report"): if not query: st.warning("Please enter a query to generate a report.") else: # Display initial progress information progress_placeholder.info("Starting research...") # Run the research asynchronously and capture output with st_capture(progress_placeholder.code): report = run_async(fetch_report(query, REPORT_TYPE)) if report and not report.startswith("Error"): st.success("Report generated successfully!") st.write(report) # Display the report in the app # Create a download button for the report st.download_button( label="Download Report as Text File", data=report, file_name="research_report.txt", mime="text/plain" ) else: st.error(report) # Show the error message if any