Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@
|
|
7 |
|
8 |
import sys
|
9 |
import os
|
10 |
-
|
11 |
os.system(f'pip install dlib')
|
12 |
import dlib
|
13 |
import argparse
|
@@ -184,8 +184,8 @@ class TargetCategory:
|
|
184 |
return output[self.category_index]
|
185 |
|
186 |
|
187 |
-
def preprocess_image_cam(pil_img,
|
188 |
-
mean=[0.5482207536697388, 0.42340534925460815, 0.3654651641845703],
|
189 |
std=[0.2789176106452942, 0.2438540756702423, 0.23493893444538116]):
|
190 |
img_np = np.array(pil_img)
|
191 |
img_np = img_np.astype(np.float32) / 255.0
|
@@ -222,9 +222,9 @@ def FSFM3C_image_detection(image):
|
|
222 |
image_results = f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]"
|
223 |
|
224 |
# Generate CAM heatmap for the detected class
|
225 |
-
use_cuda =
|
226 |
-
input_tensor = preprocess_image(img,
|
227 |
-
mean=[0.5482207536697388, 0.42340534925460815, 0.3654651641845703],
|
228 |
std=[0.2789176106452942, 0.2438540756702423, 0.23493893444538116])
|
229 |
if use_cuda:
|
230 |
input_tensor = input_tensor.cuda()
|
|
|
7 |
|
8 |
import sys
|
9 |
import os
|
10 |
+
|
11 |
os.system(f'pip install dlib')
|
12 |
import dlib
|
13 |
import argparse
|
|
|
184 |
return output[self.category_index]
|
185 |
|
186 |
|
187 |
+
def preprocess_image_cam(pil_img,
|
188 |
+
mean=[0.5482207536697388, 0.42340534925460815, 0.3654651641845703],
|
189 |
std=[0.2789176106452942, 0.2438540756702423, 0.23493893444538116]):
|
190 |
img_np = np.array(pil_img)
|
191 |
img_np = img_np.astype(np.float32) / 255.0
|
|
|
222 |
image_results = f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]"
|
223 |
|
224 |
# Generate CAM heatmap for the detected class
|
225 |
+
use_cuda = torch.cuda.is_available()
|
226 |
+
input_tensor = preprocess_image(img,
|
227 |
+
mean=[0.5482207536697388, 0.42340534925460815, 0.3654651641845703],
|
228 |
std=[0.2789176106452942, 0.2438540756702423, 0.23493893444538116])
|
229 |
if use_cuda:
|
230 |
input_tensor = input_tensor.cuda()
|