Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@
|
|
7 |
|
8 |
import sys
|
9 |
import os
|
|
|
10 |
os.system(f'pip install dlib')
|
11 |
import dlib
|
12 |
import argparse
|
@@ -24,23 +25,26 @@ import matplotlib.pyplot as plt
|
|
24 |
from torchvision import transforms
|
25 |
import traceback
|
26 |
from pytorch_grad_cam import (
|
27 |
-
GradCAM,ScoreCAM,
|
28 |
XGradCAM, EigenCAM
|
29 |
)
|
30 |
from pytorch_grad_cam import GuidedBackpropReLUModel
|
31 |
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
result =
|
|
|
36 |
return result
|
37 |
|
|
|
38 |
def get_args_parser():
|
39 |
parser = argparse.ArgumentParser('FSFM3C fine-tuning&Testing for image classification', add_help=False)
|
40 |
parser.add_argument('--batch_size', default=64, type=int, help='Batch size per GPU')
|
41 |
parser.add_argument('--epochs', default=50, type=int)
|
42 |
parser.add_argument('--accum_iter', default=1, type=int, help='Accumulate gradient iterations')
|
43 |
-
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
|
|
|
44 |
parser.add_argument('--input_size', default=224, type=int, help='images input size')
|
45 |
parser.add_argument('--normalize_from_IMN', action='store_true', help='cal mean and std from imagenet')
|
46 |
parser.set_defaults(normalize_from_IMN=True)
|
@@ -59,7 +63,8 @@ def get_args_parser():
|
|
59 |
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob')
|
60 |
parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode')
|
61 |
parser.add_argument('--recount', type=int, default=1, help='Random erase count')
|
62 |
-
parser.add_argument('--resplit', action='store_true', default=False,
|
|
|
63 |
parser.add_argument('--mixup', type=float, default=0, help='mixup alpha')
|
64 |
parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha')
|
65 |
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio')
|
@@ -69,7 +74,8 @@ def get_args_parser():
|
|
69 |
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
|
70 |
parser.add_argument('--global_pool', action='store_true')
|
71 |
parser.set_defaults(global_pool=True)
|
72 |
-
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
|
|
|
73 |
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path')
|
74 |
parser.add_argument('--nb_classes', default=1000, type=int, help='number of the classification types')
|
75 |
parser.add_argument('--output_dir', default='', help='path where to save')
|
@@ -116,10 +122,10 @@ def load_model(select_skpt):
|
|
116 |
model.load_state_dict(checkpoint['model'], strict=False)
|
117 |
model.eval()
|
118 |
global cam
|
119 |
-
cam = GradCAM(model
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
return gr.update(), f"[Loaded Model Successfully:] {args.resume}] "
|
124 |
|
125 |
|
@@ -168,29 +174,27 @@ def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None):
|
|
168 |
img.save(os.path.join(dst_path, '0', save_img_name))
|
169 |
video_capture.release()
|
170 |
return frame_indices
|
|
|
|
|
171 |
class TargetCategory:
|
172 |
def __init__(self, category_index):
|
173 |
self.category_index = category_index
|
174 |
-
|
175 |
def __call__(self, output):
|
176 |
return output[self.category_index]
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
img_np = np.array(pil_img)
|
180 |
-
|
181 |
-
# 归一化到 [0, 1]
|
182 |
img_np = img_np.astype(np.float32) / 255.0
|
183 |
-
|
184 |
-
# 标准化
|
185 |
img_np = (img_np - mean) / std
|
186 |
-
|
187 |
-
# 调整维度顺序以适应模型输入 (C, H, W)
|
188 |
img_np = np.transpose(img_np, (2, 0, 1))
|
189 |
-
|
190 |
-
# 添加批次维度 (B, C, H, W)
|
191 |
img_np = np.expand_dims(img_np, axis=0)
|
192 |
-
|
193 |
return img_np
|
|
|
|
|
194 |
def FSFM3C_image_detection(image):
|
195 |
frame_path = os.path.join(FRAME_SAVE_PATH, str(len(os.listdir(FRAME_SAVE_PATH))))
|
196 |
os.makedirs(frame_path, exist_ok=True)
|
@@ -204,7 +208,9 @@ def FSFM3C_image_detection(image):
|
|
204 |
args.batch_size = 1
|
205 |
dataset_val = build_dataset(is_train=False, args=args)
|
206 |
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
207 |
-
data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size,
|
|
|
|
|
208 |
|
209 |
if CKPT_CLASS[ckpt] > 2:
|
210 |
frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
|
@@ -217,10 +223,12 @@ def FSFM3C_image_detection(image):
|
|
217 |
|
218 |
# Generate CAM heatmap for the detected class
|
219 |
use_cuda = True
|
220 |
-
input_tensor = preprocess_image(img,
|
|
|
|
|
221 |
if use_cuda:
|
222 |
input_tensor = input_tensor.cuda()
|
223 |
-
|
224 |
# Dynamically determine the target category based on the maximum probability class
|
225 |
category_names_to_index = {
|
226 |
'Real or Bonafide': 0,
|
@@ -229,7 +237,7 @@ def FSFM3C_image_detection(image):
|
|
229 |
'Spoofing or Presentation-attack': 3
|
230 |
}
|
231 |
target_category = TargetCategory(category_names_to_index[max_prob_class])
|
232 |
-
|
233 |
grayscale_cam = cam(input_tensor=input_tensor, targets=[target_category])
|
234 |
grayscale_cam = 1 - grayscale_cam[0, :]
|
235 |
img = np.array(img)
|
@@ -244,7 +252,7 @@ def FSFM3C_image_detection(image):
|
|
244 |
# cv2.putText(visualization, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
245 |
output_path = "./CAM_images/output_heatmap.png"
|
246 |
cv2.imwrite(output_path, visualization)
|
247 |
-
return image_results, output_path,probabilities[max_prob_index]
|
248 |
|
249 |
if CKPT_CLASS[ckpt] == 2:
|
250 |
frame_preds_list, video_pred_list = test_two_class(data_loader_val, model, device)
|
@@ -257,7 +265,7 @@ def FSFM3C_image_detection(image):
|
|
257 |
label = "Spoofing" if prob <= 0.5 else "Bonafide"
|
258 |
prob = prob if label == "Bonafide" else 1 - prob
|
259 |
image_results = f"The largest face in this image may be {label} with probability {prob * 100:.1f}%"
|
260 |
-
return image_results, None
|
261 |
|
262 |
|
263 |
def FSFM3C_video_detection(video, num_frames):
|
@@ -270,19 +278,25 @@ def FSFM3C_video_detection(video, num_frames):
|
|
270 |
args.batch_size = num_frames
|
271 |
dataset_val = build_dataset(is_train=False, args=args)
|
272 |
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
273 |
-
data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size,
|
|
|
|
|
274 |
|
275 |
if CKPT_CLASS[ckpt] > 2:
|
276 |
frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
|
277 |
-
class_names = ['Real or Bonafide', 'Deepfake', 'Diffusion or AIGC generated',
|
|
|
278 |
avg_video_pred = np.mean(video_pred_list, axis=0)
|
279 |
max_prob_index = np.argmax(avg_video_pred)
|
280 |
max_prob_class = class_names[max_prob_index]
|
281 |
probabilities = [f"{class_names[i]}: {prob * 100:.1f}%" for i, prob in enumerate(avg_video_pred)]
|
282 |
|
283 |
-
frame_results = {f"frame_{frame_indices[i]}": [f"{class_names[j]}: {prob * 100:.1f}%" for j, prob in
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
286 |
return video_results
|
287 |
|
288 |
if CKPT_CLASS[ckpt] == 2:
|
@@ -292,23 +306,26 @@ def FSFM3C_video_detection(video, num_frames):
|
|
292 |
label = "Deepfake" if prob <= 0.5 else "Real"
|
293 |
prob = prob if label == "Real" else 1 - prob
|
294 |
frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
|
295 |
-
range(len(frame_indices))} if label == "Real" else {
|
296 |
-
|
|
|
297 |
|
298 |
if ckpt == 'FAS-Checkpoint_Fine-tuned_on_MCIO':
|
299 |
prob = sum(video_pred_list) / len(video_pred_list)
|
300 |
label = "Spoofing" if prob <= 0.5 else "Bonafide"
|
301 |
prob = prob if label == "Bonafide" else 1 - prob
|
302 |
frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
|
303 |
-
range(len(frame_indices))} if label == "Bonafide" else {
|
304 |
-
|
|
|
305 |
|
306 |
video_results = (f"The largest face in this image may be {label} with probability {prob * 100:.1f}%\n \n"
|
307 |
-
|
308 |
return video_results
|
309 |
except Exception as e:
|
310 |
return f"Error occurred. Please provide a clear face video or reduce the number of frames."
|
311 |
|
|
|
312 |
# Paths and Constants
|
313 |
P = os.path.abspath(__file__)
|
314 |
FRAME_SAVE_PATH = os.path.join(os.path.dirname(P), 'frame')
|
@@ -337,14 +354,17 @@ CKPT_MODEL = {
|
|
337 |
}
|
338 |
|
339 |
with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16px !important; }") as demo:
|
340 |
-
gr.HTML(
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
348 |
|
349 |
with gr.Row():
|
350 |
ckpt_select_dropdown = gr.Dropdown(
|
@@ -358,11 +378,12 @@ with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16p
|
|
358 |
model_loading_status = gr.Textbox(label="Model Loading Status")
|
359 |
with gr.Row():
|
360 |
with gr.Column(scale=5):
|
361 |
-
gr.Markdown(
|
|
|
362 |
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
|
363 |
image_submit_btn = gr.Button("Submit")
|
364 |
output_results_image = gr.Textbox(label="Detection Result")
|
365 |
-
|
366 |
with gr.Row():
|
367 |
output_heatmap = gr.Image(label="Grad_CAM")
|
368 |
output_max_prob_class = gr.Textbox(label="Detected Class")
|
@@ -373,15 +394,14 @@ with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16p
|
|
373 |
video_submit_btn = gr.Button("Submit")
|
374 |
output_results_video = gr.Textbox(label="Detection Result")
|
375 |
|
376 |
-
gr.HTML(
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
|
384 |
-
|
385 |
ckpt_select_dropdown.change(
|
386 |
fn=load_model,
|
387 |
inputs=[ckpt_select_dropdown],
|
@@ -390,7 +410,7 @@ with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16p
|
|
390 |
image_submit_btn.click(
|
391 |
fn=FSFM3C_image_detection,
|
392 |
inputs=[image],
|
393 |
-
outputs=[output_results_image, output_heatmap,output_max_prob_class],
|
394 |
)
|
395 |
video_submit_btn.click(
|
396 |
fn=FSFM3C_video_detection,
|
|
|
7 |
|
8 |
import sys
|
9 |
import os
|
10 |
+
|
11 |
os.system(f'pip install dlib')
|
12 |
import dlib
|
13 |
import argparse
|
|
|
25 |
from torchvision import transforms
|
26 |
import traceback
|
27 |
from pytorch_grad_cam import (
|
28 |
+
GradCAM, ScoreCAM,
|
29 |
XGradCAM, EigenCAM
|
30 |
)
|
31 |
from pytorch_grad_cam import GuidedBackpropReLUModel
|
32 |
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
|
33 |
|
34 |
+
|
35 |
+
def reshape_transform(tensor, height=14, width=14):
|
36 |
+
result = tensor[:, 1:, :].reshape(tensor.size(0), height, width, tensor.size(2))
|
37 |
+
result = result.transpose(2, 3).transpose(1, 2)
|
38 |
return result
|
39 |
|
40 |
+
|
41 |
def get_args_parser():
|
42 |
parser = argparse.ArgumentParser('FSFM3C fine-tuning&Testing for image classification', add_help=False)
|
43 |
parser.add_argument('--batch_size', default=64, type=int, help='Batch size per GPU')
|
44 |
parser.add_argument('--epochs', default=50, type=int)
|
45 |
parser.add_argument('--accum_iter', default=1, type=int, help='Accumulate gradient iterations')
|
46 |
+
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
|
47 |
+
help='Name of model to train')
|
48 |
parser.add_argument('--input_size', default=224, type=int, help='images input size')
|
49 |
parser.add_argument('--normalize_from_IMN', action='store_true', help='cal mean and std from imagenet')
|
50 |
parser.set_defaults(normalize_from_IMN=True)
|
|
|
63 |
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob')
|
64 |
parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode')
|
65 |
parser.add_argument('--recount', type=int, default=1, help='Random erase count')
|
66 |
+
parser.add_argument('--resplit', action='store_true', default=False,
|
67 |
+
help='Do not random erase first augmentation split')
|
68 |
parser.add_argument('--mixup', type=float, default=0, help='mixup alpha')
|
69 |
parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha')
|
70 |
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio')
|
|
|
74 |
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
|
75 |
parser.add_argument('--global_pool', action='store_true')
|
76 |
parser.set_defaults(global_pool=True)
|
77 |
+
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
|
78 |
+
help='Use class token for classification')
|
79 |
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path')
|
80 |
parser.add_argument('--nb_classes', default=1000, type=int, help='number of the classification types')
|
81 |
parser.add_argument('--output_dir', default='', help='path where to save')
|
|
|
122 |
model.load_state_dict(checkpoint['model'], strict=False)
|
123 |
model.eval()
|
124 |
global cam
|
125 |
+
cam = GradCAM(model=model,
|
126 |
+
target_layers=[model.blocks[-1].norm1],
|
127 |
+
reshape_transform=reshape_transform
|
128 |
+
)
|
129 |
return gr.update(), f"[Loaded Model Successfully:] {args.resume}] "
|
130 |
|
131 |
|
|
|
174 |
img.save(os.path.join(dst_path, '0', save_img_name))
|
175 |
video_capture.release()
|
176 |
return frame_indices
|
177 |
+
|
178 |
+
|
179 |
class TargetCategory:
|
180 |
def __init__(self, category_index):
|
181 |
self.category_index = category_index
|
182 |
+
|
183 |
def __call__(self, output):
|
184 |
return output[self.category_index]
|
185 |
+
|
186 |
+
|
187 |
+
def preprocess_image_cam(pil_img,
|
188 |
+
mean=[0.5482207536697388, 0.42340534925460815, 0.3654651641845703],
|
189 |
+
std=[0.2789176106452942, 0.2438540756702423, 0.23493893444538116]):
|
190 |
img_np = np.array(pil_img)
|
|
|
|
|
191 |
img_np = img_np.astype(np.float32) / 255.0
|
|
|
|
|
192 |
img_np = (img_np - mean) / std
|
|
|
|
|
193 |
img_np = np.transpose(img_np, (2, 0, 1))
|
|
|
|
|
194 |
img_np = np.expand_dims(img_np, axis=0)
|
|
|
195 |
return img_np
|
196 |
+
|
197 |
+
|
198 |
def FSFM3C_image_detection(image):
|
199 |
frame_path = os.path.join(FRAME_SAVE_PATH, str(len(os.listdir(FRAME_SAVE_PATH))))
|
200 |
os.makedirs(frame_path, exist_ok=True)
|
|
|
208 |
args.batch_size = 1
|
209 |
dataset_val = build_dataset(is_train=False, args=args)
|
210 |
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
211 |
+
data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size,
|
212 |
+
num_workers=args.num_workers, pin_memory=args.pin_mem,
|
213 |
+
drop_last=False)
|
214 |
|
215 |
if CKPT_CLASS[ckpt] > 2:
|
216 |
frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
|
|
|
223 |
|
224 |
# Generate CAM heatmap for the detected class
|
225 |
use_cuda = True
|
226 |
+
input_tensor = preprocess_image(img,
|
227 |
+
mean=[0.5482207536697388, 0.42340534925460815, 0.3654651641845703],
|
228 |
+
std=[0.2789176106452942, 0.2438540756702423, 0.23493893444538116])
|
229 |
if use_cuda:
|
230 |
input_tensor = input_tensor.cuda()
|
231 |
+
|
232 |
# Dynamically determine the target category based on the maximum probability class
|
233 |
category_names_to_index = {
|
234 |
'Real or Bonafide': 0,
|
|
|
237 |
'Spoofing or Presentation-attack': 3
|
238 |
}
|
239 |
target_category = TargetCategory(category_names_to_index[max_prob_class])
|
240 |
+
|
241 |
grayscale_cam = cam(input_tensor=input_tensor, targets=[target_category])
|
242 |
grayscale_cam = 1 - grayscale_cam[0, :]
|
243 |
img = np.array(img)
|
|
|
252 |
# cv2.putText(visualization, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
253 |
output_path = "./CAM_images/output_heatmap.png"
|
254 |
cv2.imwrite(output_path, visualization)
|
255 |
+
return image_results, output_path, probabilities[max_prob_index]
|
256 |
|
257 |
if CKPT_CLASS[ckpt] == 2:
|
258 |
frame_preds_list, video_pred_list = test_two_class(data_loader_val, model, device)
|
|
|
265 |
label = "Spoofing" if prob <= 0.5 else "Bonafide"
|
266 |
prob = prob if label == "Bonafide" else 1 - prob
|
267 |
image_results = f"The largest face in this image may be {label} with probability {prob * 100:.1f}%"
|
268 |
+
return image_results, None, None
|
269 |
|
270 |
|
271 |
def FSFM3C_video_detection(video, num_frames):
|
|
|
278 |
args.batch_size = num_frames
|
279 |
dataset_val = build_dataset(is_train=False, args=args)
|
280 |
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
281 |
+
data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size,
|
282 |
+
num_workers=args.num_workers, pin_memory=args.pin_mem,
|
283 |
+
drop_last=False)
|
284 |
|
285 |
if CKPT_CLASS[ckpt] > 2:
|
286 |
frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
|
287 |
+
class_names = ['Real or Bonafide', 'Deepfake', 'Diffusion or AIGC generated',
|
288 |
+
'Spoofing or Presentation-attack']
|
289 |
avg_video_pred = np.mean(video_pred_list, axis=0)
|
290 |
max_prob_index = np.argmax(avg_video_pred)
|
291 |
max_prob_class = class_names[max_prob_index]
|
292 |
probabilities = [f"{class_names[i]}: {prob * 100:.1f}%" for i, prob in enumerate(avg_video_pred)]
|
293 |
|
294 |
+
frame_results = {f"frame_{frame_indices[i]}": [f"{class_names[j]}: {prob * 100:.1f}%" for j, prob in
|
295 |
+
enumerate(frame_preds_list[i])] for i in
|
296 |
+
range(len(frame_indices))}
|
297 |
+
video_results = (
|
298 |
+
f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]\n \n"
|
299 |
+
f"The frame-level detection results ['frame_index': 'probabilities']: \n{frame_results}")
|
300 |
return video_results
|
301 |
|
302 |
if CKPT_CLASS[ckpt] == 2:
|
|
|
306 |
label = "Deepfake" if prob <= 0.5 else "Real"
|
307 |
prob = prob if label == "Real" else 1 - prob
|
308 |
frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
|
309 |
+
range(len(frame_indices))} if label == "Real" else {
|
310 |
+
f"frame_{frame_indices[i]}": f"{(1 - frame_preds_list[i]) * 100:.1f}%" for i in
|
311 |
+
range(len(frame_indices))}
|
312 |
|
313 |
if ckpt == 'FAS-Checkpoint_Fine-tuned_on_MCIO':
|
314 |
prob = sum(video_pred_list) / len(video_pred_list)
|
315 |
label = "Spoofing" if prob <= 0.5 else "Bonafide"
|
316 |
prob = prob if label == "Bonafide" else 1 - prob
|
317 |
frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
|
318 |
+
range(len(frame_indices))} if label == "Bonafide" else {
|
319 |
+
f"frame_{frame_indices[i]}": f"{(1 - frame_preds_list[i]) * 100:.1f}%" for i in
|
320 |
+
range(len(frame_indices))}
|
321 |
|
322 |
video_results = (f"The largest face in this image may be {label} with probability {prob * 100:.1f}%\n \n"
|
323 |
+
f"The frame-level detection results ['frame_index': 'real_face_probability']: \n{frame_results}")
|
324 |
return video_results
|
325 |
except Exception as e:
|
326 |
return f"Error occurred. Please provide a clear face video or reduce the number of frames."
|
327 |
|
328 |
+
|
329 |
# Paths and Constants
|
330 |
P = os.path.abspath(__file__)
|
331 |
FRAME_SAVE_PATH = os.path.join(os.path.dirname(P), 'frame')
|
|
|
354 |
}
|
355 |
|
356 |
with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16px !important; }") as demo:
|
357 |
+
gr.HTML(
|
358 |
+
"<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery (Deepfake/Diffusion) and Spoofing (Presentation-attacks)</h1>")
|
359 |
+
gr.Markdown(
|
360 |
+
"<b>☉ Powered by the fine-tuned ViT models that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)</b> <br> "
|
361 |
+
"<b>☉ We do not and cannot access or store the data you have uploaded!</b> <br> "
|
362 |
+
"<b>☉ Release (Continuously updating) </b> <br> <b>[V1.0] 2025/02/22-Current🎉</b>: "
|
363 |
+
"1) Updated <b>[✨Unified-detector_v1] for Unified Physical-Digital Face Attack&Forgery Detection, a ViT-B/16-224 (FSFM Pre-trained) detector that could identify Real&Bonafide, Deepfake, Diffusion&AIGC, Spooing&Presentation-attacks facial images or videos </b> ; 2) Provided the selection of the number of video frames (uniformly sampling 1-32 frames, more frames may time-consuming for this page without GPU acceleration); 3) Fixed some errors of V0.1 including loading and prediction. <br>"
|
364 |
+
"<b>[V0.1] 2024/12-2025/02/21</b>: "
|
365 |
+
"Create this page with basic detectors [DfD-Checkpoint_Fine-tuned_on_FF++, FAS-Checkpoint_Fine-tuned_on_MCIO] that follow the paper implementation. <br> ")
|
366 |
+
gr.Markdown(
|
367 |
+
"- Please <b>provide a facial image or video(<100s)</b>, and <b>select the model</b> for detection: <br> <b>[SUGGEST] [✨Unified-detector_v1_Fine-tuned_on_4_classes]</b> a (FSFM Pre-trained) ViT-B/16-224 for Both Real/Deepfake/Diffusion/Spoofing facial images&videos Detection <br> <b>[DfD-Checkpoint_Fine-tuned_on_FF++]</b> for deepfake detection, FSFM ViT-B/16-224 fine-tuned on the FF++_c23 train&val sets (4 manipulations, 32 frames per video) <br> <b>[FAS-Checkpoint_Fine-tuned_on_MCIO]</b> for face anti-spoofing, FSFM ViT-B/16-224 fine-tuned on the MCIO datasets (2 frames per video)")
|
368 |
|
369 |
with gr.Row():
|
370 |
ckpt_select_dropdown = gr.Dropdown(
|
|
|
378 |
model_loading_status = gr.Textbox(label="Model Loading Status")
|
379 |
with gr.Row():
|
380 |
with gr.Column(scale=5):
|
381 |
+
gr.Markdown(
|
382 |
+
"### Image Detection (Fast Try: copying image from [whichfaceisreal](https://whichfaceisreal.com/))")
|
383 |
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
|
384 |
image_submit_btn = gr.Button("Submit")
|
385 |
output_results_image = gr.Textbox(label="Detection Result")
|
386 |
+
|
387 |
with gr.Row():
|
388 |
output_heatmap = gr.Image(label="Grad_CAM")
|
389 |
output_max_prob_class = gr.Textbox(label="Detected Class")
|
|
|
394 |
video_submit_btn = gr.Button("Submit")
|
395 |
output_results_video = gr.Textbox(label="Detection Result")
|
396 |
|
397 |
+
gr.HTML(
|
398 |
+
'<div style="display: flex; justify-content: center; gap: 20px; margin-bottom: 20px;">'
|
399 |
+
'<a href="https://mapmyvisitors.com/web/1bxvi" title="Visit tracker">'
|
400 |
+
'<img src="https://mapmyvisitors.com/map.png?d=FYhBoxLDEaFAxdfRzk5TuchYOBGrnSa98Ky59EkEEpY&cl=ffffff">'
|
401 |
+
'</a>'
|
402 |
+
'</div>'
|
403 |
+
)
|
404 |
|
|
|
405 |
ckpt_select_dropdown.change(
|
406 |
fn=load_model,
|
407 |
inputs=[ckpt_select_dropdown],
|
|
|
410 |
image_submit_btn.click(
|
411 |
fn=FSFM3C_image_detection,
|
412 |
inputs=[image],
|
413 |
+
outputs=[output_results_image, output_heatmap, output_max_prob_class],
|
414 |
)
|
415 |
video_submit_btn.click(
|
416 |
fn=FSFM3C_video_detection,
|