File size: 19,898 Bytes
b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 e46e042 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 4413e3a b32e831 4d10ed1 4413e3a 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 75db2c5 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 4413e3a 4d10ed1 4413e3a 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 b32e831 4d10ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR; TongWu@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
import sys
import os
os.system(f'pip install dlib')
import dlib
import argparse
import numpy as np
from PIL import Image
import cv2
import torch
from huggingface_hub import hf_hub_download
import gradio as gr
import models_vit
from util.datasets import build_dataset
from engine_finetune import test_two_class, test_multi_class
def get_args_parser():
parser = argparse.ArgumentParser('FSFM3C fine-tuning&Testing for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int, help='Batch size per GPU')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int, help='Accumulate gradient iterations')
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int, help='images input size')
parser.add_argument('--normalize_from_IMN', action='store_true', help='cal mean and std from imagenet')
parser.set_defaults(normalize_from_IMN=True)
parser.add_argument('--apply_simple_augment', action='store_true', help='apply simple data augment')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm')
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay')
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', help='base learning rate')
parser.add_argument('--layer_decay', type=float, default=0.75, help='layer-wise lr decay')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR')
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', help='Color jitter factor')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy')
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing')
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob')
parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode')
parser.add_argument('--recount', type=int, default=1, help='Random erase count')
parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first augmentation split')
parser.add_argument('--mixup', type=float, default=0, help='mixup alpha')
parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio')
parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix')
parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params')
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
parser.add_argument('--cls_token', action='store_false', dest='global_pool', help='Use class token for classification')
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int, help='number of the classification types')
parser.add_argument('--output_dir', default='', help='path where to save')
parser.add_argument('--log_dir', default='', help='path where to tensorboard log')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.set_defaults(eval=True)
parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def load_model(select_skpt):
global ckpt, device, model, checkpoint
if select_skpt not in CKPT_NAME:
return gr.update(), "Select a correct model"
ckpt = select_skpt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.nb_classes = CKPT_CLASS[ckpt]
model = models_vit.__dict__[CKPT_MODEL[ckpt]](
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
).to(device)
args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
args.resume = CKPT_PATH[ckpt]
checkpoint = torch.load(args.resume, map_location=device)
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
return gr.update(), f"[Loaded Model Successfully:] {args.resume}] "
def get_boundingbox(face, width, height, minsize=None):
x1, y1, x2, y2 = face.left(), face.top(), face.right(), face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * 1.3)
if minsize and size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
x1, y1 = max(int(center_x - size_bb // 2), 0), max(int(center_y - size_bb // 2), 0)
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def extract_face(frame):
face_detector = dlib.get_frontal_face_detector()
image = np.array(frame.convert('RGB'))
faces = face_detector(image, 1)
if faces:
face = faces[0]
x, y, size = get_boundingbox(face, image.shape[1], image.shape[0])
cropped_face = image[y:y + size, x:x + size]
return Image.fromarray(cropped_face)
return None
def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
return np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int).tolist()
def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None):
video_capture = cv2.VideoCapture(src_video)
total_frames = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_indices = get_frame_index_uniform_sample(total_frames, num_frames) if num_frames else range(total_frames)
for frame_index in frame_indices:
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = video_capture.read()
if not ret:
continue
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
img = extract_face(image)
if img:
img = img.resize((224, 224), Image.BICUBIC)
save_img_name = f"frame_{frame_index}.png"
img.save(os.path.join(dst_path, '0', save_img_name))
video_capture.release()
return frame_indices
def FSFM3C_image_detection(image):
frame_path = os.path.join(FRAME_SAVE_PATH, str(len(os.listdir(FRAME_SAVE_PATH))))
os.makedirs(frame_path, exist_ok=True)
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
img = extract_face(image)
if img is None:
return 'No face detected, please upload a clear face!'
img = img.resize((224, 224), Image.BICUBIC)
img.save(os.path.join(frame_path, '0', "frame_0.png"))
args.data_path = frame_path
args.batch_size = 1
dataset_val = build_dataset(is_train=False, args=args)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False)
if CKPT_CLASS[ckpt] > 2:
frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
class_names = ['Real or Bonafide', 'Deepfake', 'Diffusion or AIGC generated', 'Spoofing or Presentation-attack']
avg_video_pred = np.mean(video_pred_list, axis=0)
max_prob_index = np.argmax(avg_video_pred)
max_prob_class = class_names[max_prob_index]
probabilities = [f"{class_names[i]}: {prob * 100:.1f}%" for i, prob in enumerate(avg_video_pred)]
image_results = f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]"
return image_results
if CKPT_CLASS[ckpt] == 2:
frame_preds_list, video_pred_list = test_two_class(data_loader_val, model, device)
if ckpt == 'DfD-Checkpoint_Fine-tuned_on_FF++':
prob = sum(video_pred_list) / len(video_pred_list)
label = "Deepfake" if prob <= 0.5 else "Real"
prob = prob if label == "Real" else 1 - prob
if ckpt == 'FAS-Checkpoint_Fine-tuned_on_MCIO':
prob = sum(video_pred_list) / len(video_pred_list)
label = "Spoofing" if prob <= 0.5 else "Bonafide"
prob = prob if label == "Bonafide" else 1 - prob
image_results = f"The largest face in this image may be {label} with probability {prob * 100:.1f}%"
return image_results
def FSFM3C_video_detection(video, num_frames):
try:
frame_path = os.path.join(FRAME_SAVE_PATH, str(len(os.listdir(FRAME_SAVE_PATH))))
os.makedirs(frame_path, exist_ok=True)
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
frame_indices = extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames)
args.data_path = frame_path
args.batch_size = num_frames
dataset_val = build_dataset(is_train=False, args=args)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False)
if CKPT_CLASS[ckpt] > 2:
frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
class_names = ['Real or Bonafide', 'Deepfake', 'Diffusion or AIGC generated', 'Spoofing or Presentation-attack']
avg_video_pred = np.mean(video_pred_list, axis=0)
max_prob_index = np.argmax(avg_video_pred)
max_prob_class = class_names[max_prob_index]
probabilities = [f"{class_names[i]}: {prob * 100:.1f}%" for i, prob in enumerate(avg_video_pred)]
frame_results = {f"frame_{frame_indices[i]}": [f"{class_names[j]}: {prob * 100:.1f}%" for j, prob in enumerate(frame_preds_list[i])] for i in range(len(frame_indices))}
video_results = (f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]\n \n"
f"The frame-level detection results ['frame_index': 'probabilities']: \n{frame_results}")
return video_results
if CKPT_CLASS[ckpt] == 2:
frame_preds_list, video_pred_list = test_two_class(data_loader_val, model, device)
if ckpt == 'DfD-Checkpoint_Fine-tuned_on_FF++':
prob = sum(video_pred_list) / len(video_pred_list)
label = "Deepfake" if prob <= 0.5 else "Real"
prob = prob if label == "Real" else 1 - prob
frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
range(len(frame_indices))} if label == "Real" else {f"frame_{frame_indices[i]}": f"{(1 - frame_preds_list[i]) * 100:.1f}%" for i in
range(len(frame_indices))}
if ckpt == 'FAS-Checkpoint_Fine-tuned_on_MCIO':
prob = sum(video_pred_list) / len(video_pred_list)
label = "Spoofing" if prob <= 0.5 else "Bonafide"
prob = prob if label == "Bonafide" else 1 - prob
frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
range(len(frame_indices))} if label == "Bonafide" else {f"frame_{frame_indices[i]}": f"{(1 - frame_preds_list[i]) * 100:.1f}%" for i in
range(len(frame_indices))}
video_results = (f"The largest face in this image may be {label} with probability {prob * 100:.1f}%\n \n"
f"The frame-level detection results ['frame_index': 'real_face_probability']: \n{frame_results}")
return video_results
except Exception as e:
return f"Error occurred. Please provide a clear face video or reduce the number of frames."
# Paths and Constants
P = os.path.abspath(__file__)
FRAME_SAVE_PATH = os.path.join(os.path.dirname(P), 'frame')
CKPT_SAVE_PATH = os.path.join(os.path.dirname(P), 'checkpoints')
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)
CKPT_NAME = [
'✨Unified-detector_v1_Fine-tuned_on_4_classes',
'DfD-Checkpoint_Fine-tuned_on_FF++',
'FAS-Checkpoint_Fine-tuned_on_MCIO',
]
# CKPT_PATH = {
# '✨Unified-detector_v1_Fine-tuned_on_4_classes': 'finetuned_models/Unified-detector/v1_Fine-tuned_on_4_classes/checkpoint-min_val_loss.pth',
# 'DfD-Checkpoint_Fine-tuned_on_FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
# 'FAS-Checkpoint_Fine-tuned_on_MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth',
# }
CKPT_PATH = {
'✨Unified-detector_v1_Fine-tuned_on_4_classes': './checkpoints/checkpoint-min_train_loss.pth',
'DfD-Checkpoint_Fine-tuned_on_FF++': '/mnt/localDisk2/wgj/FSFM/released/FSFM-main/fsfm-3c/finuetune/cross_dataset_DfD/checkpoint/finetuned_models/ft_on_FF++_c23_32frames/pt_from_VF2_ViT-B_epoch600/checkpoint-min_val_loss.pth',
'FAS-Checkpoint_Fine-tuned_on_MCIO': '/mnt/localDisk2/wgj/FSFM/FSFM-3C/codespace/fsfm-3c/finuetune/cross_dataset_DfD/finetuned_models/FAS_MCIO/checkpoint-199.pth',
}
CKPT_CLASS = {
'✨Unified-detector_v1_Fine-tuned_on_4_classes': 4,
'DfD-Checkpoint_Fine-tuned_on_FF++': 2,
'FAS-Checkpoint_Fine-tuned_on_MCIO': 2
}
CKPT_MODEL = {
'✨Unified-detector_v1_Fine-tuned_on_4_classes': 'vit_base_patch16',
'DfD-Checkpoint_Fine-tuned_on_FF++': 'vit_base_patch16',
'FAS-Checkpoint_Fine-tuned_on_MCIO': 'vit_base_patch16',
}
with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16px !important; }") as demo:
gr.HTML("<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery (Deepfake/Diffusion) and Spoofing (Presentation-attacks)</h1>")
gr.Markdown("<b>☉ Powered by the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)</b> <br> "
"<b>☉ Release (Continuously updating) </b> <br> <b>[V1.0]</b> 2025/02/22-Current🎉: "
"1) Updated <b>[✨Unified-detector_v1] for Unified Physical-Digital Face Attack&Forgery Detection, a vanilla ViT-B/16-224 (FSFM Pre-trained) that could identify Real&Bonafide, Deepfake, Diffduion&AIGC, Spooing&Presentation-attacks facial images or videos </b> ; 2) Provided the selection of the number of video frames (uniformly sampling, more frames are too time-consuming, and we would be grateful if you support us to open paid GPU acceleration); 3) Fixed the errors of V0.1 including loading model and prediction. <br>"
"<b>[V0.1]</b> 2024/12-2025/02/21: "
"Create this page with basic detectors [DfD-Checkpoint_Fine-tuned_on_FF++, FAS-Checkpoint_Fine-tuned_on_MCIO] that follow the paper implementation. <br> ")
gr.Markdown("- Please <b>provide a facial image or video(<100s)</b>, and <b>select the model</b> for detection: <br> <b>[suggest] [✨Unified-detector_v1_Fine-tuned_on_4_classes]</b> <b>a (FSFM Pre-trained) ViT-B/16-224 for Both Real/Deepfake/Diffusion/Spoofing facial images&videos Detection <b> <br> <b>[DfD-Checkpoint_Fine-tuned_on_FF++]</b> for deepfake detection, FSFM ViT-B/16-224 fine-tuned on the FF++_c23 train&val sets (4 manipulations, 32 frames per video) <br> <b>[FAS-Checkpoint_Fine-tuned_on_MCIO]</b> for face anti-spoofing, FSFM ViT-B/16-224 fine-tuned on the MCIO datasets (2 frames per video)")
with gr.Row():
ckpt_select_dropdown = gr.Dropdown(
label="Select the Model for Detection ⬇️",
elem_classes="custom-label",
choices=['Choose Model Here 🖱️'] + CKPT_NAME + ['continuously updating...'],
multiselect=False,
value='Choose Model Here 🖱️',
interactive=True,
)
model_loading_status = gr.Textbox(label="Model Loading Status")
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("### Image Detection")
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
image_submit_btn = gr.Button("Submit")
output_results_image = gr.Textbox(label="Detection Result")
with gr.Column(scale=5):
gr.Markdown("### Video Detection")
video = gr.Video(label="Upload/Capture your video")
frame_slider = gr.Slider(minimum=1, maximum=32, step=1, value=32, label="Number of Frames for Detection")
video_submit_btn = gr.Button("Submit")
output_results_video = gr.Textbox(label="Detection Result")
ckpt_select_dropdown.change(
fn=load_model,
inputs=[ckpt_select_dropdown],
outputs=[ckpt_select_dropdown, model_loading_status],
)
image_submit_btn.click(
fn=FSFM3C_image_detection,
inputs=[image],
outputs=[output_results_image],
)
video_submit_btn.click(
fn=FSFM3C_video_detection,
inputs=[video, frame_slider],
outputs=[output_results_video],
)
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
ckpt = 'DfD-Checkpoint_Fine-tuned_on_FF++'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.nb_classes = CKPT_CLASS[ckpt]
model = models_vit.__dict__[CKPT_MODEL[ckpt]](
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
).to(device)
args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
args.resume = CKPT_PATH[ckpt]
checkpoint = torch.load(args.resume, map_location=device)
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
gr.close_all()
demo.queue()
# demo.launch()
demo.launch(server_name="0.0.0.0", server_port=8888) |