File size: 19,898 Bytes
b32e831
4d10ed1
b32e831
 
 
 
 
 
 
 
4d10ed1
 
b32e831
 
4d10ed1
 
 
b32e831
 
 
 
4d10ed1
b32e831
 
 
4d10ed1
 
b32e831
4d10ed1
 
 
 
b32e831
4d10ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32e831
 
4d10ed1
 
 
 
 
 
b32e831
4d10ed1
 
 
b32e831
4d10ed1
b32e831
4d10ed1
b32e831
 
4d10ed1
b32e831
 
4d10ed1
b32e831
 
 
4d10ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46e042
4d10ed1
b32e831
 
 
4d10ed1
b32e831
4d10ed1
 
b32e831
4d10ed1
b32e831
 
 
 
 
 
 
 
 
4d10ed1
b32e831
 
 
 
4d10ed1
4413e3a
 
b32e831
4d10ed1
4413e3a
 
4d10ed1
b32e831
4d10ed1
 
b32e831
 
 
 
 
4d10ed1
 
 
 
 
 
b32e831
75db2c5
b32e831
 
4d10ed1
 
b32e831
 
 
 
4d10ed1
b32e831
4d10ed1
b32e831
 
 
 
4d10ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32e831
4d10ed1
 
 
4413e3a
4d10ed1
4413e3a
 
4d10ed1
 
 
 
 
 
 
 
 
 
 
 
 
b32e831
4d10ed1
 
 
 
 
b32e831
 
4d10ed1
b32e831
 
 
 
4d10ed1
b32e831
 
4d10ed1
b32e831
 
4d10ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32e831
 
4d10ed1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR; TongWu@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------

import sys
import os
os.system(f'pip install dlib')
import dlib
import argparse
import numpy as np
from PIL import Image
import cv2
import torch
from huggingface_hub import hf_hub_download
import gradio as gr

import models_vit
from util.datasets import build_dataset
from engine_finetune import test_two_class, test_multi_class


def get_args_parser():
    parser = argparse.ArgumentParser('FSFM3C fine-tuning&Testing for image classification', add_help=False)
    parser.add_argument('--batch_size', default=64, type=int, help='Batch size per GPU')
    parser.add_argument('--epochs', default=50, type=int)
    parser.add_argument('--accum_iter', default=1, type=int, help='Accumulate gradient iterations')
    parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL', help='Name of model to train')
    parser.add_argument('--input_size', default=224, type=int, help='images input size')
    parser.add_argument('--normalize_from_IMN', action='store_true', help='cal mean and std from imagenet')
    parser.set_defaults(normalize_from_IMN=True)
    parser.add_argument('--apply_simple_augment', action='store_true', help='apply simple data augment')
    parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate')
    parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm')
    parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay')
    parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate')
    parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', help='base learning rate')
    parser.add_argument('--layer_decay', type=float, default=0.75, help='layer-wise lr decay')
    parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound')
    parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR')
    parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', help='Color jitter factor')
    parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy')
    parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing')
    parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob')
    parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode')
    parser.add_argument('--recount', type=int, default=1, help='Random erase count')
    parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first augmentation split')
    parser.add_argument('--mixup', type=float, default=0, help='mixup alpha')
    parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha')
    parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio')
    parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix')
    parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix')
    parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params')
    parser.add_argument('--finetune', default='', help='finetune from checkpoint')
    parser.add_argument('--global_pool', action='store_true')
    parser.set_defaults(global_pool=True)
    parser.add_argument('--cls_token', action='store_false', dest='global_pool', help='Use class token for classification')
    parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path')
    parser.add_argument('--nb_classes', default=1000, type=int, help='number of the classification types')
    parser.add_argument('--output_dir', default='', help='path where to save')
    parser.add_argument('--log_dir', default='', help='path where to tensorboard log')
    parser.add_argument('--device', default='cuda', help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
    parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
    parser.set_defaults(eval=True)
    parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
    parser.set_defaults(pin_mem=True)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    return parser


def load_model(select_skpt):
    global ckpt, device, model, checkpoint
    if select_skpt not in CKPT_NAME:
        return gr.update(), "Select a correct model"
    ckpt = select_skpt
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.nb_classes = CKPT_CLASS[ckpt]
    model = models_vit.__dict__[CKPT_MODEL[ckpt]](
        num_classes=args.nb_classes,
        drop_path_rate=args.drop_path,
        global_pool=args.global_pool,
    ).to(device)

    args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
    args.resume = CKPT_PATH[ckpt]
    checkpoint = torch.load(args.resume, map_location=device)
    model.load_state_dict(checkpoint['model'], strict=False)
    model.eval()
    return gr.update(), f"[Loaded Model Successfully:] {args.resume}] "


def get_boundingbox(face, width, height, minsize=None):
    x1, y1, x2, y2 = face.left(), face.top(), face.right(), face.bottom()
    size_bb = int(max(x2 - x1, y2 - y1) * 1.3)
    if minsize and size_bb < minsize:
        size_bb = minsize
    center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
    x1, y1 = max(int(center_x - size_bb // 2), 0), max(int(center_y - size_bb // 2), 0)
    size_bb = min(width - x1, size_bb)
    size_bb = min(height - y1, size_bb)
    return x1, y1, size_bb


def extract_face(frame):
    face_detector = dlib.get_frontal_face_detector()
    image = np.array(frame.convert('RGB'))
    faces = face_detector(image, 1)
    if faces:
        face = faces[0]
        x, y, size = get_boundingbox(face, image.shape[1], image.shape[0])
        cropped_face = image[y:y + size, x:x + size]
        return Image.fromarray(cropped_face)
    return None


def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
    return np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int).tolist()


def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None):
    video_capture = cv2.VideoCapture(src_video)
    total_frames = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_indices = get_frame_index_uniform_sample(total_frames, num_frames) if num_frames else range(total_frames)
    for frame_index in frame_indices:
        video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
        ret, frame = video_capture.read()
        if not ret:
            continue
        image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        img = extract_face(image)
        if img:
            img = img.resize((224, 224), Image.BICUBIC)
            save_img_name = f"frame_{frame_index}.png"
            img.save(os.path.join(dst_path, '0', save_img_name))
    video_capture.release()
    return frame_indices


def FSFM3C_image_detection(image):
    frame_path = os.path.join(FRAME_SAVE_PATH, str(len(os.listdir(FRAME_SAVE_PATH))))
    os.makedirs(frame_path, exist_ok=True)
    os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
    img = extract_face(image)
    if img is None:
        return 'No face detected, please upload a clear face!'
    img = img.resize((224, 224), Image.BICUBIC)
    img.save(os.path.join(frame_path, '0', "frame_0.png"))
    args.data_path = frame_path
    args.batch_size = 1
    dataset_val = build_dataset(is_train=False, args=args)
    sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False)

    if CKPT_CLASS[ckpt] > 2:
        frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
        class_names = ['Real or Bonafide', 'Deepfake', 'Diffusion or AIGC generated', 'Spoofing or Presentation-attack']
        avg_video_pred = np.mean(video_pred_list, axis=0)
        max_prob_index = np.argmax(avg_video_pred)
        max_prob_class = class_names[max_prob_index]
        probabilities = [f"{class_names[i]}: {prob * 100:.1f}%" for i, prob in enumerate(avg_video_pred)]
        image_results = f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]"
        return image_results

    if CKPT_CLASS[ckpt] == 2:
        frame_preds_list, video_pred_list = test_two_class(data_loader_val, model, device)
        if ckpt == 'DfD-Checkpoint_Fine-tuned_on_FF++':
            prob = sum(video_pred_list) / len(video_pred_list)
            label = "Deepfake" if prob <= 0.5 else "Real"
            prob = prob if label == "Real" else 1 - prob
        if ckpt == 'FAS-Checkpoint_Fine-tuned_on_MCIO':
            prob = sum(video_pred_list) / len(video_pred_list)
            label = "Spoofing" if prob <= 0.5 else "Bonafide"
            prob = prob if label == "Bonafide" else 1 - prob
        image_results = f"The largest face in this image may be {label} with probability {prob * 100:.1f}%"
        return image_results


def FSFM3C_video_detection(video, num_frames):
    try:
        frame_path = os.path.join(FRAME_SAVE_PATH, str(len(os.listdir(FRAME_SAVE_PATH))))
        os.makedirs(frame_path, exist_ok=True)
        os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
        frame_indices = extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames)
        args.data_path = frame_path
        args.batch_size = num_frames
        dataset_val = build_dataset(is_train=False, args=args)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)
        data_loader_val = torch.utils.data.DataLoader(dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False)

        if CKPT_CLASS[ckpt] > 2:
            frame_preds_list, video_pred_list = test_multi_class(data_loader_val, model, device)
            class_names = ['Real or Bonafide', 'Deepfake', 'Diffusion or AIGC generated', 'Spoofing or Presentation-attack']
            avg_video_pred = np.mean(video_pred_list, axis=0)
            max_prob_index = np.argmax(avg_video_pred)
            max_prob_class = class_names[max_prob_index]
            probabilities = [f"{class_names[i]}: {prob * 100:.1f}%" for i, prob in enumerate(avg_video_pred)]

            frame_results = {f"frame_{frame_indices[i]}": [f"{class_names[j]}: {prob * 100:.1f}%" for j, prob in enumerate(frame_preds_list[i])] for i in range(len(frame_indices))}
            video_results = (f"The largest face in this image may be {max_prob_class} with probability: \n [{', '.join(probabilities)}]\n \n"
                             f"The frame-level detection results ['frame_index': 'probabilities']: \n{frame_results}")
            return video_results

        if CKPT_CLASS[ckpt] == 2:
            frame_preds_list, video_pred_list = test_two_class(data_loader_val, model, device)
            if ckpt == 'DfD-Checkpoint_Fine-tuned_on_FF++':
                prob = sum(video_pred_list) / len(video_pred_list)
                label = "Deepfake" if prob <= 0.5 else "Real"
                prob = prob if label == "Real" else 1 - prob
                frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
                                 range(len(frame_indices))} if label == "Real" else {f"frame_{frame_indices[i]}": f"{(1 - frame_preds_list[i]) * 100:.1f}%" for i in
                                 range(len(frame_indices))}

            if ckpt == 'FAS-Checkpoint_Fine-tuned_on_MCIO':
                prob = sum(video_pred_list) / len(video_pred_list)
                label = "Spoofing" if prob <= 0.5 else "Bonafide"
                prob = prob if label == "Bonafide" else 1 - prob
                frame_results = {f"frame_{frame_indices[i]}": f"{(frame_preds_list[i]) * 100:.1f}%" for i in
                                 range(len(frame_indices))} if label == "Bonafide" else {f"frame_{frame_indices[i]}": f"{(1 - frame_preds_list[i]) * 100:.1f}%" for i in
                                 range(len(frame_indices))}

            video_results = (f"The largest face in this image may be {label} with probability {prob * 100:.1f}%\n \n"
                            f"The frame-level detection results ['frame_index': 'real_face_probability']: \n{frame_results}")
            return video_results
    except Exception as e:
        return f"Error occurred. Please provide a clear face video or reduce the number of frames."

# Paths and Constants
P = os.path.abspath(__file__)
FRAME_SAVE_PATH = os.path.join(os.path.dirname(P), 'frame')
CKPT_SAVE_PATH = os.path.join(os.path.dirname(P), 'checkpoints')
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)
CKPT_NAME = [
    '✨Unified-detector_v1_Fine-tuned_on_4_classes',
    'DfD-Checkpoint_Fine-tuned_on_FF++',
    'FAS-Checkpoint_Fine-tuned_on_MCIO',
]
# CKPT_PATH = {
#     '✨Unified-detector_v1_Fine-tuned_on_4_classes': 'finetuned_models/Unified-detector/v1_Fine-tuned_on_4_classes/checkpoint-min_val_loss.pth',
#     'DfD-Checkpoint_Fine-tuned_on_FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
#     'FAS-Checkpoint_Fine-tuned_on_MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth',
# }
CKPT_PATH = {
    '✨Unified-detector_v1_Fine-tuned_on_4_classes': './checkpoints/checkpoint-min_train_loss.pth',
    'DfD-Checkpoint_Fine-tuned_on_FF++': '/mnt/localDisk2/wgj/FSFM/released/FSFM-main/fsfm-3c/finuetune/cross_dataset_DfD/checkpoint/finetuned_models/ft_on_FF++_c23_32frames/pt_from_VF2_ViT-B_epoch600/checkpoint-min_val_loss.pth',
    'FAS-Checkpoint_Fine-tuned_on_MCIO': '/mnt/localDisk2/wgj/FSFM/FSFM-3C/codespace/fsfm-3c/finuetune/cross_dataset_DfD/finetuned_models/FAS_MCIO/checkpoint-199.pth',
}
CKPT_CLASS = {
    '✨Unified-detector_v1_Fine-tuned_on_4_classes': 4,
    'DfD-Checkpoint_Fine-tuned_on_FF++': 2,
    'FAS-Checkpoint_Fine-tuned_on_MCIO': 2
}
CKPT_MODEL = {
    '✨Unified-detector_v1_Fine-tuned_on_4_classes': 'vit_base_patch16',
    'DfD-Checkpoint_Fine-tuned_on_FF++': 'vit_base_patch16',
    'FAS-Checkpoint_Fine-tuned_on_MCIO': 'vit_base_patch16',
}


with gr.Blocks(css=".custom-label { font-weight: bold !important; font-size: 16px !important; }") as demo:
    gr.HTML("<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery (Deepfake/Diffusion) and Spoofing (Presentation-attacks)</h1>")
    gr.Markdown("<b>☉ Powered by the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)</b> <br> "
                "<b>☉ Release (Continuously updating) </b> <br> <b>[V1.0]</b> 2025/02/22-Current🎉: "
                "1) Updated <b>[✨Unified-detector_v1] for Unified Physical-Digital Face Attack&Forgery Detection, a vanilla ViT-B/16-224 (FSFM Pre-trained) that could identify Real&Bonafide, Deepfake, Diffduion&AIGC, Spooing&Presentation-attacks facial images or videos </b> ; 2) Provided the selection of the number of video frames (uniformly sampling, more frames are too time-consuming, and we would be grateful if you support us to open paid GPU acceleration); 3) Fixed the errors of V0.1 including loading model and prediction. <br>"
                "<b>[V0.1]</b> 2024/12-2025/02/21: "
                "Create this page with basic detectors [DfD-Checkpoint_Fine-tuned_on_FF++, FAS-Checkpoint_Fine-tuned_on_MCIO] that follow the paper implementation. <br> ")
    gr.Markdown("- Please <b>provide a facial image or video(<100s)</b>, and <b>select the model</b> for detection: <br> <b>[suggest] [✨Unified-detector_v1_Fine-tuned_on_4_classes]</b> <b>a (FSFM Pre-trained) ViT-B/16-224 for Both Real/Deepfake/Diffusion/Spoofing facial images&videos Detection <b> <br> <b>[DfD-Checkpoint_Fine-tuned_on_FF++]</b> for deepfake detection, FSFM ViT-B/16-224 fine-tuned on the FF++_c23 train&val sets (4 manipulations, 32 frames per video) <br> <b>[FAS-Checkpoint_Fine-tuned_on_MCIO]</b> for face anti-spoofing, FSFM ViT-B/16-224 fine-tuned on the MCIO datasets (2 frames per video)")


    with gr.Row():
        ckpt_select_dropdown = gr.Dropdown(
            label="Select the Model for Detection ⬇️",
            elem_classes="custom-label",
            choices=['Choose Model Here 🖱️'] + CKPT_NAME + ['continuously updating...'],
            multiselect=False,
            value='Choose Model Here 🖱️',
            interactive=True,
        )
        model_loading_status = gr.Textbox(label="Model Loading Status")
    with gr.Row():
        with gr.Column(scale=5):
            gr.Markdown("### Image Detection")
            image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
            image_submit_btn = gr.Button("Submit")
            output_results_image = gr.Textbox(label="Detection Result")
        with gr.Column(scale=5):
            gr.Markdown("### Video Detection")
            video = gr.Video(label="Upload/Capture your video")
            frame_slider = gr.Slider(minimum=1, maximum=32, step=1, value=32, label="Number of Frames for Detection")
            video_submit_btn = gr.Button("Submit")
            output_results_video = gr.Textbox(label="Detection Result")

    ckpt_select_dropdown.change(
        fn=load_model,
        inputs=[ckpt_select_dropdown],
        outputs=[ckpt_select_dropdown, model_loading_status],
    )
    image_submit_btn.click(
        fn=FSFM3C_image_detection,
        inputs=[image],
        outputs=[output_results_image],
    )
    video_submit_btn.click(
        fn=FSFM3C_video_detection,
        inputs=[video, frame_slider],
        outputs=[output_results_video],
    )


if __name__ == "__main__":
    args = get_args_parser()
    args = args.parse_args()
    ckpt = 'DfD-Checkpoint_Fine-tuned_on_FF++'
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.nb_classes = CKPT_CLASS[ckpt]
    model = models_vit.__dict__[CKPT_MODEL[ckpt]](
        num_classes=args.nb_classes,
        drop_path_rate=args.drop_path,
        global_pool=args.global_pool,
    ).to(device)
    args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
    args.resume = CKPT_PATH[ckpt]
    checkpoint = torch.load(args.resume, map_location=device)
    model.load_state_dict(checkpoint['model'], strict=False)
    model.eval()

    gr.close_all()
    demo.queue()
    # demo.launch()
    demo.launch(server_name="0.0.0.0", server_port=8888)