Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,18 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def generate_response(prompt, max_tokens, temperature, top_p, top_k, repetition_penalty):
|
8 |
output = generator(
|
|
|
1 |
+
from transformers import GPT2Config, GPT2LMHeadModel
|
2 |
+
from transformers import CONFIG_MAPPING, MODEL_MAPPING, pipeline
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
# Paso 1: Registrar el modelo
|
6 |
+
class GPT1_5HighConfig(GPT2Config):
|
7 |
+
def __init__(self, **kwargs):
|
8 |
+
super().__init__(**kwargs)
|
9 |
+
|
10 |
+
# Registrar la configuraci贸n personalizada en los diccionarios de Transformers
|
11 |
+
CONFIG_MAPPING["gpt1_5high"] = GPT1_5HighConfig
|
12 |
+
MODEL_MAPPING[GPT1_5HighConfig] = GPT2LMHeadModel # Usa el modelo adecuado
|
13 |
+
|
14 |
+
# Paso 2: Crear el pipeline de generaci贸n de texto
|
15 |
+
generator = pipeline("text-generation", model="WolfInk/GPT-1.5-High", config="gpt1_5high")
|
16 |
|
17 |
def generate_response(prompt, max_tokens, temperature, top_p, top_k, repetition_penalty):
|
18 |
output = generator(
|