File size: 14,678 Bytes
033bd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import torch
from torch import nn as nn
import numpy as np
import math
import torch.nn.functional as F


class SimpleInputFusion(nn.Module):
    def __init__(self, add_ch=1, rgb_ch=3, ch=8, norm_layer=nn.BatchNorm2d):
        super(SimpleInputFusion, self).__init__()

        self.fusion_conv = nn.Sequential(
            nn.Conv2d(in_channels=add_ch + rgb_ch, out_channels=ch, kernel_size=1),
            nn.LeakyReLU(negative_slope=0.2),
            norm_layer(ch),
            nn.Conv2d(in_channels=ch, out_channels=rgb_ch, kernel_size=1),
        )

    def forward(self, image, additional_input):
        return self.fusion_conv(torch.cat((image, additional_input), dim=1))


class MaskedChannelAttention(nn.Module):
    def __init__(self, in_channels, *args, **kwargs):
        super(MaskedChannelAttention, self).__init__()
        self.global_max_pool = MaskedGlobalMaxPool2d()
        self.global_avg_pool = FastGlobalAvgPool2d()

        intermediate_channels_count = max(in_channels // 16, 8)
        self.attention_transform = nn.Sequential(
            nn.Linear(3 * in_channels, intermediate_channels_count),
            nn.ReLU(inplace=True),
            nn.Linear(intermediate_channels_count, in_channels),
            nn.Sigmoid(),
        )

    def forward(self, x, mask):
        if mask.shape[2:] != x.shape[:2]:
            mask = nn.functional.interpolate(
                mask, size=x.size()[-2:],
                mode='bilinear', align_corners=True
            )
        pooled_x = torch.cat([
            self.global_max_pool(x, mask),
            self.global_avg_pool(x)
        ], dim=1)
        channel_attention_weights = self.attention_transform(pooled_x)[..., None, None]

        return channel_attention_weights * x


class MaskedGlobalMaxPool2d(nn.Module):
    def __init__(self):
        super().__init__()
        self.global_max_pool = FastGlobalMaxPool2d()

    def forward(self, x, mask):
        return torch.cat((
            self.global_max_pool(x * mask),
            self.global_max_pool(x * (1.0 - mask))
        ), dim=1)


class FastGlobalAvgPool2d(nn.Module):
    def __init__(self):
        super(FastGlobalAvgPool2d, self).__init__()

    def forward(self, x):
        in_size = x.size()
        return x.view((in_size[0], in_size[1], -1)).mean(dim=2)


class FastGlobalMaxPool2d(nn.Module):
    def __init__(self):
        super(FastGlobalMaxPool2d, self).__init__()

    def forward(self, x):
        in_size = x.size()
        return x.view((in_size[0], in_size[1], -1)).max(dim=2)[0]


class ScaleLayer(nn.Module):
    def __init__(self, init_value=1.0, lr_mult=1):
        super().__init__()
        self.lr_mult = lr_mult
        self.scale = nn.Parameter(
            torch.full((1,), init_value / lr_mult, dtype=torch.float32)
        )

    def forward(self, x):
        scale = torch.abs(self.scale * self.lr_mult)
        return x * scale


class FeaturesConnector(nn.Module):
    def __init__(self, mode, in_channels, feature_channels, out_channels):
        super(FeaturesConnector, self).__init__()
        self.mode = mode if feature_channels else ''

        if self.mode == 'catc':
            self.reduce_conv = nn.Conv2d(in_channels + feature_channels, out_channels, kernel_size=1)
        elif self.mode == 'sum':
            self.reduce_conv = nn.Conv2d(feature_channels, out_channels, kernel_size=1)

        self.output_channels = out_channels if self.mode != 'cat' else in_channels + feature_channels

    def forward(self, x, features):
        if self.mode == 'cat':
            return torch.cat((x, features), 1)
        if self.mode == 'catc':
            return self.reduce_conv(torch.cat((x, features), 1))
        if self.mode == 'sum':
            return self.reduce_conv(features) + x
        return x

    def extra_repr(self):
        return self.mode


class PosEncodingNeRF(nn.Module):
    def __init__(self, in_features, sidelength=None, fn_samples=None, use_nyquist=True):
        super().__init__()

        self.in_features = in_features

        if self.in_features == 3:
            self.num_frequencies = 10
        elif self.in_features == 2:
            assert sidelength is not None
            if isinstance(sidelength, int):
                sidelength = (sidelength, sidelength)
            self.num_frequencies = 4
            if use_nyquist:
                self.num_frequencies = self.get_num_frequencies_nyquist(min(sidelength[0], sidelength[1]))
        elif self.in_features == 1:
            assert fn_samples is not None
            self.num_frequencies = 4
            if use_nyquist:
                self.num_frequencies = self.get_num_frequencies_nyquist(fn_samples)

        self.out_dim = in_features + 2 * in_features * self.num_frequencies

    def get_num_frequencies_nyquist(self, samples):
        nyquist_rate = 1 / (2 * (2 * 1 / samples))
        return int(math.floor(math.log(nyquist_rate, 2)))

    def forward(self, coords):
        coords = coords.view(coords.shape[0], -1, self.in_features)

        coords_pos_enc = coords
        for i in range(self.num_frequencies):
            for j in range(self.in_features):
                c = coords[..., j]

                sin = torch.unsqueeze(torch.sin((2 ** i) * np.pi * c), -1)
                cos = torch.unsqueeze(torch.cos((2 ** i) * np.pi * c), -1)

                coords_pos_enc = torch.cat((coords_pos_enc, sin, cos), axis=-1)

        return coords_pos_enc.reshape(coords.shape[0], -1, self.out_dim)


class RandomFourier(nn.Module):
    def __init__(self, std_scale, embedding_length, device):
        super().__init__()

        self.embed = torch.normal(0, 1, (2, embedding_length)) * std_scale
        self.embed = self.embed.to(device)

        self.out_dim = embedding_length * 2 + 2

    def forward(self, coords):
        coords_pos_enc = torch.cat([torch.sin(torch.matmul(2 * np.pi * coords, self.embed)),
                                    torch.cos(torch.matmul(2 * np.pi * coords, self.embed))], dim=-1)

        return torch.cat([coords, coords_pos_enc.reshape(coords.shape[0], -1, self.out_dim)], dim=-1)


class CIPS_embed(nn.Module):
    def __init__(self, size, embedding_length):
        super().__init__()
        self.fourier_embed = ConstantInput(size, embedding_length)
        self.predict_embed = Predict_embed(embedding_length)
        self.out_dim = embedding_length * 2 + 2

    def forward(self, coord, res=None):
        x = self.predict_embed(coord)
        y = self.fourier_embed(x, coord, res)

        return torch.cat([coord, x, y], dim=-1)


class Predict_embed(nn.Module):
    def __init__(self, embedding_length):
        super(Predict_embed, self).__init__()
        self.ffm = nn.Linear(2, embedding_length, bias=True)
        nn.init.uniform_(self.ffm.weight, -np.sqrt(9 / 2), np.sqrt(9 / 2))

    def forward(self, x):
        x = self.ffm(x)
        x = torch.sin(x)
        return x


class ConstantInput(nn.Module):
    def __init__(self, size, channel):
        super().__init__()

        self.input = nn.Parameter(torch.randn(1, size ** 2, channel))

    def forward(self, input, coord, resolution=None):
        batch = input.shape[0]
        out = self.input.repeat(batch, 1, 1)

        if coord.shape[1] != self.input.shape[1]:
            x = out.permute(0, 2, 1).contiguous().view(batch, self.input.shape[-1],
                                                       int(self.input.shape[1] ** 0.5), int(self.input.shape[1] ** 0.5))

            if resolution is None:
                grid = coord.view(coord.shape[0], int(coord.shape[1] ** 0.5), int(coord.shape[1] ** 0.5), coord.shape[-1])
            else:
                grid = coord.view(coord.shape[0], *resolution, coord.shape[-1])

            out = F.grid_sample(x, grid.flip(-1), mode='bilinear', padding_mode='border', align_corners=True)

            out = out.permute(0, 2, 3, 1).contiguous().view(batch, -1, self.input.shape[-1])

        return out


class INRGAN_embed(nn.Module):
    def __init__(self, resolution: int, w_dim=None):
        super().__init__()

        self.resolution = resolution
        self.res_cfg = {"log_emb_size": 32,
                        "random_emb_size": 32,
                        "const_emb_size": 64,
                        "use_cosine": True}
        self.log_emb_size = self.res_cfg.get('log_emb_size', 0)
        self.random_emb_size = self.res_cfg.get('random_emb_size', 0)
        self.shared_emb_size = self.res_cfg.get('shared_emb_size', 0)
        self.predictable_emb_size = self.res_cfg.get('predictable_emb_size', 0)
        self.const_emb_size = self.res_cfg.get('const_emb_size', 0)
        self.fourier_scale = self.res_cfg.get('fourier_scale', np.sqrt(10))
        self.use_cosine = self.res_cfg.get('use_cosine', False)

        if self.log_emb_size > 0:
            self.register_buffer('log_basis', generate_logarithmic_basis(
                resolution, self.log_emb_size, use_diagonal=self.res_cfg.get('use_diagonal', False)))

        if self.random_emb_size > 0:
            self.register_buffer('random_basis', self.sample_w_matrix((2, self.random_emb_size), self.fourier_scale))

        if self.shared_emb_size > 0:
            self.shared_basis = nn.Parameter(self.sample_w_matrix((2, self.shared_emb_size), self.fourier_scale))

        if self.predictable_emb_size > 0:
            self.W_size = self.predictable_emb_size * self.cfg.coord_dim
            self.b_size = self.predictable_emb_size
            self.affine = nn.Linear(w_dim, self.W_size + self.b_size)

        if self.const_emb_size > 0:
            self.const_embs = nn.Parameter(torch.randn(1, resolution ** 2, self.const_emb_size))

        self.out_dim = self.get_total_dim() + 2

    def sample_w_matrix(self, shape, scale: float):
        return torch.randn(shape) * scale

    def get_total_dim(self) -> int:
        total_dim = 0
        if self.log_emb_size > 0:
            total_dim += self.log_basis.shape[0] * (2 if self.use_cosine else 1)
        total_dim += self.random_emb_size * (2 if self.use_cosine else 1)
        total_dim += self.shared_emb_size * (2 if self.use_cosine else 1)
        total_dim += self.predictable_emb_size * (2 if self.use_cosine else 1)
        total_dim += self.const_emb_size

        return total_dim

    def forward(self, raw_coords, w=None):
        batch_size, img_size, in_channels = raw_coords.shape

        raw_embs = []

        if self.log_emb_size > 0:
            log_bases = self.log_basis.unsqueeze(0).repeat(batch_size, 1, 1).permute(0, 2, 1)
            raw_log_embs = torch.matmul(raw_coords, log_bases)
            raw_embs.append(raw_log_embs)

        if self.random_emb_size > 0:
            random_bases = self.random_basis.unsqueeze(0).repeat(batch_size, 1, 1)
            raw_random_embs = torch.matmul(raw_coords, random_bases)
            raw_embs.append(raw_random_embs)

        if self.shared_emb_size > 0:
            shared_bases = self.shared_basis.unsqueeze(0).repeat(batch_size, 1, 1)
            raw_shared_embs = torch.matmul(raw_coords, shared_bases)
            raw_embs.append(raw_shared_embs)

        if self.predictable_emb_size > 0:
            mod = self.affine(w)
            W = self.fourier_scale * mod[:, :self.W_size]
            W = W.view(batch_size, self.cfg.coord_dim, self.predictable_emb_size)
            bias = mod[:, self.W_size:].view(batch_size, 1, self.predictable_emb_size)
            raw_predictable_embs = (torch.matmul(raw_coords, W) + bias)
            raw_embs.append(raw_predictable_embs)

        if len(raw_embs) > 0:
            raw_embs = torch.cat(raw_embs, dim=-1)
            raw_embs = raw_embs.contiguous()
            out = raw_embs.sin()

            if self.use_cosine:
                out = torch.cat([out, raw_embs.cos()], dim=-1)

        if self.const_emb_size > 0:
            const_embs = self.const_embs.repeat([batch_size, 1, 1])
            const_embs = const_embs
            out = torch.cat([out, const_embs], dim=-1)

        return torch.cat([raw_coords, out], dim=-1)


def generate_logarithmic_basis(
        resolution,
        max_num_feats,
        remove_lowest_freq: bool = False,
        use_diagonal: bool = True):
    """
    Generates a directional logarithmic basis with the following directions:
        - horizontal
        - vertical
        - main diagonal
        - anti-diagonal
    """
    max_num_feats_per_direction = np.ceil(np.log2(resolution)).astype(int)
    bases = [
        generate_horizontal_basis(max_num_feats_per_direction),
        generate_vertical_basis(max_num_feats_per_direction),
    ]

    if use_diagonal:
        bases.extend([
            generate_diag_main_basis(max_num_feats_per_direction),
            generate_anti_diag_basis(max_num_feats_per_direction),
        ])

    if remove_lowest_freq:
        bases = [b[1:] for b in bases]

    # If we do not fit into `max_num_feats`, then trying to remove the features in the order:
    # 1) anti-diagonal 2) main-diagonal
    # while (max_num_feats_per_direction * len(bases) > max_num_feats) and (len(bases) > 2):
    #     bases = bases[:-1]

    basis = torch.cat(bases, dim=0)

    # If we still do not fit, then let's remove each second feature,
    # then each third, each forth and so on
    # We cannot drop the whole horizontal or vertical direction since otherwise
    # model won't be able to locate the position
    # (unless the previously computed embeddings encode the position)
    # while basis.shape[0] > max_num_feats:
    #     num_exceeding_feats = basis.shape[0] - max_num_feats
    #     basis = basis[::2]

    assert basis.shape[0] <= max_num_feats, \
        f"num_coord_feats > max_num_fixed_coord_feats: {basis.shape, max_num_feats}."

    return basis


def generate_horizontal_basis(num_feats: int):
    return generate_wavefront_basis(num_feats, [0.0, 1.0], 4.0)


def generate_vertical_basis(num_feats: int):
    return generate_wavefront_basis(num_feats, [1.0, 0.0], 4.0)


def generate_diag_main_basis(num_feats: int):
    return generate_wavefront_basis(num_feats, [-1.0 / np.sqrt(2), 1.0 / np.sqrt(2)], 4.0 * np.sqrt(2))


def generate_anti_diag_basis(num_feats: int):
    return generate_wavefront_basis(num_feats, [1.0 / np.sqrt(2), 1.0 / np.sqrt(2)], 4.0 * np.sqrt(2))


def generate_wavefront_basis(num_feats: int, basis_block, period_length: float):
    period_coef = 2.0 * np.pi / period_length
    basis = torch.tensor([basis_block]).repeat(num_feats, 1)  # [num_feats, 2]
    powers = torch.tensor([2]).repeat(num_feats).pow(torch.arange(num_feats)).unsqueeze(1)  # [num_feats, 1]
    result = basis * powers * period_coef  # [num_feats, 2]

    return result.float()