Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from sd3_pipeline import StableDiffusion3Pipeline | |
import torch | |
import random | |
import numpy as np | |
import os | |
import gc | |
from diffusers import AutoencoderKLWan | |
from wan_pipeline import WanPipeline | |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler | |
from PIL import Image | |
from diffusers.utils import export_to_video | |
from huggingface_hub import login | |
# Authenticate with HF | |
login(token=os.getenv('HF_TOKEN')) | |
def set_seed(seed): | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
# Updated model paths - now includes gated models | |
model_paths = { | |
"sd2.1": "stabilityai/stable-diffusion-2-1", | |
"sdxl": "stabilityai/stable-diffusion-xl-base-1.0", | |
"sd3": "stabilityai/stable-diffusion-3-medium-diffusers", | |
"sd3.5": "stabilityai/stable-diffusion-3.5-large", | |
# "wan-t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" # Keep commented if you don't have access to this one | |
} | |
current_model = None | |
OUTPUT_DIR = "generated_videos" | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
def load_model(model_name): | |
global current_model | |
if current_model is not None: | |
del current_model | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Determine device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if "wan-t2v" in model_name: | |
vae = AutoencoderKLWan.from_pretrained( | |
model_paths[model_name], | |
subfolder="vae", | |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 | |
) | |
scheduler = UniPCMultistepScheduler( | |
prediction_type='flow_prediction', | |
use_flow_sigmas=True, | |
num_train_timesteps=1000, | |
flow_shift=8.0 | |
) | |
current_model = WanPipeline.from_pretrained( | |
model_paths[model_name], | |
vae=vae, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32 | |
).to(device) | |
current_model.scheduler = scheduler | |
else: | |
# Handle different model types | |
if model_name in ["sd2.1"]: | |
from diffusers import StableDiffusionPipeline | |
current_model = StableDiffusionPipeline.from_pretrained( | |
model_paths[model_name], | |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 | |
).to(device) | |
elif model_name in ["sdxl"]: | |
from diffusers import StableDiffusionXLPipeline | |
current_model = StableDiffusionXLPipeline.from_pretrained( | |
model_paths[model_name], | |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 | |
).to(device) | |
else: | |
# For SD3 models (when access is granted) | |
current_model = StableDiffusion3Pipeline.from_pretrained( | |
model_paths[model_name], | |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 | |
).to(device) | |
return current_model | |
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50, | |
use_cfg_zero_star=True, use_zero_init=True, zero_steps=0, | |
seed=None, compare_mode=False): | |
model = load_model(model_name) | |
if seed is None: | |
seed = random.randint(0, 2**32 - 1) | |
set_seed(seed) | |
is_video_model = "wan-t2v" in model_name | |
print('prompt: ', prompt) | |
if is_video_model: | |
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards" | |
video1_frames = model( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=480, | |
width=832, | |
num_frames=81, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
use_cfg_zero_star=True, | |
use_zero_init=True, | |
zero_steps=zero_steps | |
).frames[0] | |
video1_path = os.path.join(OUTPUT_DIR, f"{seed}_CFG-Zero-Star.mp4") | |
export_to_video(video1_frames, video1_path, fps=16) | |
return None, None, video1_path, seed | |
# Handle different model types for image generation | |
if model_name in ["sd2.1", "sdxl"]: | |
# Standard diffusers pipeline interface | |
if compare_mode: | |
set_seed(seed) | |
image1 = model( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
set_seed(seed) | |
image2 = model( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
return image1, image2, None, seed | |
else: | |
image = model( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
return image, None, None, seed | |
else: | |
# SD3 models with custom parameters | |
if compare_mode: | |
set_seed(seed) | |
image1 = model( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
use_cfg_zero_star=True, | |
use_zero_init=use_zero_init, | |
zero_steps=zero_steps | |
).images[0] | |
set_seed(seed) | |
image2 = model( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
use_cfg_zero_star=False, | |
use_zero_init=use_zero_init, | |
zero_steps=zero_steps | |
).images[0] | |
return image1, image2, None, seed | |
else: | |
image = model( | |
prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
use_cfg_zero_star=use_cfg_zero_star, | |
use_zero_init=use_zero_init, | |
zero_steps=zero_steps | |
).images[0] | |
if use_cfg_zero_star: | |
return image, None, None, seed | |
else: | |
return None, image, None, seed | |
# Gradio UI with left-right layout | |
with gr.Blocks() as demo: | |
gr.HTML(""" | |
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;"> | |
CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models | |
</div> | |
<div style="text-align: center;"> | |
<a href="https://github.com/WeichenFan/CFG-Zero-star">Code</a> | | |
<a href="https://arxiv.org/abs/2503.18886">Paper</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Textbox(value="A spooky haunted mansion on a hill silhouetted by a full moon.", label="Enter your prompt") | |
model_choice = gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model") | |
guidance_scale = gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale") | |
inference_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps") | |
use_opt_scale = gr.Checkbox(value=True, label="Use Optimized-Scale") | |
use_zero_init = gr.Checkbox(value=True, label="Use Zero Init") | |
zero_steps = gr.Slider(0, 20, value=1, step=1, label="Zero out steps") | |
seed = gr.Number(value=42, label="Seed (Leave blank for random)") | |
compare_mode = gr.Checkbox(value=True, label="Compare Mode") | |
generate_btn = gr.Button("Generate") | |
with gr.Column(scale=2): | |
out1 = gr.Image(type="pil", label="CFG-Zero* Image") | |
out2 = gr.Image(type="pil", label="CFG Image") | |
video = gr.Video(label="Video") | |
used_seed = gr.Textbox(label="Used Seed") | |
def update_params(model_name): | |
print('model_name: ', model_name) | |
if model_name == "wan-t2v": | |
return ( | |
gr.update(value=5), | |
gr.update(value=50), | |
gr.update(value=True), | |
gr.update(value=True), | |
gr.update(value=1) | |
) | |
else: | |
return ( | |
gr.update(value=4.0), | |
gr.update(value=50), | |
gr.update(value=True), | |
gr.update(value=True), | |
gr.update(value=1) | |
) | |
model_choice.change( | |
fn=update_params, | |
inputs=[model_choice], | |
outputs=[guidance_scale, inference_steps, use_opt_scale, use_zero_init, zero_steps] | |
) | |
generate_btn.click( | |
fn=generate_content, | |
inputs=[ | |
prompt, model_choice, guidance_scale, inference_steps, | |
use_opt_scale, use_zero_init, zero_steps, seed, compare_mode | |
], | |
outputs=[out1, out2, video, used_seed] | |
) | |
demo.launch(ssr_mode=False) |