# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math import torch import torch.cuda.amp as amp import torch.nn as nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from typing import List, Union, Optional, Tuple from .attention import flash_attention __all__ = ['WanModel'] def sinusoidal_embedding_1d(dim, position): # preprocess assert dim % 2 == 0 half = dim // 2 position = position.type(torch.float64) # calculation sinusoid = torch.outer( position, torch.pow(10000, -torch.arange(half).to(position).div(half))) x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) return x @amp.autocast(enabled=False) def rope_params(max_seq_len, dim, theta=10000): assert dim % 2 == 0 freqs = torch.outer( torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim))) freqs = torch.polar(torch.ones_like(freqs), freqs) return freqs @amp.autocast(enabled=False) def rope_apply(x, grid_sizes, freqs): n, c = x.size(2), x.size(3) // 2 # split freqs freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) # loop over samples output = [] for i, (f, h, w) in enumerate(grid_sizes.tolist()): seq_len = f * h * w # precompute multipliers x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( seq_len, n, -1, 2)) freqs_i = torch.cat([ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) ], dim=-1).reshape(seq_len, 1, -1) # apply rotary embedding x_i = torch.view_as_real(x_i * freqs_i).flatten(2) x_i = torch.cat([x_i, x[i, seq_len:]]) # append to collection output.append(x_i) return torch.stack(output).float() class WanRMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): r""" Args: x(Tensor): Shape [B, L, C] """ return self._norm(x.float()).type_as(x) * self.weight def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) class WanLayerNorm(nn.LayerNorm): def __init__(self, dim, eps=1e-6, elementwise_affine=False): super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) def forward(self, x): r""" Args: x(Tensor): Shape [B, L, C] """ return super().forward(x.float()).type_as(x) class WanSelfAttention(nn.Module): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.window_size = window_size self.qk_norm = qk_norm self.eps = eps # layers self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() def forward(self, x, seq_lens, grid_sizes, freqs): r""" Args: x(Tensor): Shape [B, L, num_heads, C / num_heads] seq_lens(Tensor): Shape [B] grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim # query, key, value function def qkv_fn(x): q = self.norm_q(self.q(x)).view(b, s, n, d) k = self.norm_k(self.k(x)).view(b, s, n, d) v = self.v(x).view(b, s, n, d) return q, k, v q, k, v = qkv_fn(x) x = flash_attention( q=rope_apply(q, grid_sizes, freqs), k=rope_apply(k, grid_sizes, freqs), v=v, k_lens=seq_lens, window_size=self.window_size) # output x = x.flatten(2) x = self.o(x) return x class WanT2VCrossAttention(WanSelfAttention): def forward(self, x, context, context_lens, collect_attn_map=False): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] context_lens(Tensor): Shape [B] """ b, n, d = x.size(0), self.num_heads, self.head_dim # compute query, key, value q = self.norm_q(self.q(x)).view(b, -1, n, d) k = self.norm_k(self.k(context)).view(b, -1, n, d) v = self.v(context).view(b, -1, n, d) if collect_attn_map: # visual cross map start L1 = x.size(1) L2 = context.size(1) q_permuted = q.permute(0, 2, 1, 3) # [B, n, L1, d] k_permuted = k.permute(0, 2, 1, 3) # [B, n, L2, d] scale_factor = 1.0 / math.sqrt(d) k_transposed = k_permuted.transpose(-2, -1) # [B, n, d, L2] attn_scores = torch.matmul(q_permuted, k_transposed) * scale_factor # [B, n, L1, L2] if context_lens is not None: mask = torch.arange(L2, device=q.device)[None, None, None, :] >= context_lens.to(q.device)[:, None, None, None] attn_scores = attn_scores.masked_fill(mask, -torch.finfo(attn_scores.dtype).max) attn_weights = torch.softmax(attn_scores, dim=-1) # [B, n, L1, L2] # compute attention x = flash_attention(q, k, v, k_lens=context_lens) # output x = x.flatten(2) x = self.o(x) if collect_attn_map: return x, attn_weights return x class WanI2VCrossAttention(WanSelfAttention): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6): super().__init__(dim, num_heads, window_size, qk_norm, eps) self.k_img = nn.Linear(dim, dim) self.v_img = nn.Linear(dim, dim) # self.alpha = nn.Parameter(torch.zeros((1, ))) self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() def forward(self, x, context, context_lens): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] context_lens(Tensor): Shape [B] """ context_img = context[:, :257] context = context[:, 257:] b, n, d = x.size(0), self.num_heads, self.head_dim # compute query, key, value q = self.norm_q(self.q(x)).view(b, -1, n, d) k = self.norm_k(self.k(context)).view(b, -1, n, d) v = self.v(context).view(b, -1, n, d) k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) v_img = self.v_img(context_img).view(b, -1, n, d) img_x = flash_attention(q, k_img, v_img, k_lens=None) # compute attention x = flash_attention(q, k, v, k_lens=context_lens) # output x = x.flatten(2) img_x = img_x.flatten(2) x = x + img_x x = self.o(x) return x WAN_CROSSATTENTION_CLASSES = { 't2v_cross_attn': WanT2VCrossAttention, 'i2v_cross_attn': WanI2VCrossAttention, } class WanAttentionBlock(nn.Module): def __init__(self, cross_attn_type, dim, ffn_dim, num_heads, window_size=(-1, -1), qk_norm=True, cross_attn_norm=False, eps=1e-6): super().__init__() self.dim = dim self.ffn_dim = ffn_dim self.num_heads = num_heads self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps # layers self.norm1 = WanLayerNorm(dim, eps) self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps) self.norm3 = WanLayerNorm( dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity() self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps) self.norm2 = WanLayerNorm(dim, eps) self.ffn = nn.Sequential( nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), nn.Linear(ffn_dim, dim)) # modulation self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) def forward( self, x, e, seq_lens, grid_sizes, freqs, context, context_lens, collect_attn_map=False, depth_tensor=None, depth_tensor_lens=None ): r""" Args: x(Tensor): Shape [B, L, C] e(Tensor): Shape [B, 6, C] seq_lens(Tensor): Shape [B], length of each sequence in batch grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ assert e.dtype == torch.float32 with amp.autocast(dtype=torch.float32): e = (self.modulation + e).chunk(6, dim=1) assert e[0].dtype == torch.float32 # self-attention y = self.self_attn( self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs) with amp.autocast(dtype=torch.float32): x = x + y * e[2] # cross-attention & ffn function def cross_attn_ffn(x, context, context_lens, e, collect_attn_map): if collect_attn_map: cross_x, attn_scores = self.cross_attn(self.norm3(x), context, context_lens, collect_attn_map) else: cross_x = self.cross_attn(self.norm3(x), context, context_lens, collect_attn_map) x = x + cross_x y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) with amp.autocast(dtype=torch.float32): x = x + y * e[5] if collect_attn_map: return x, attn_scores else: return x if collect_attn_map: x, attn_scores = cross_attn_ffn(x, context, context_lens, e, collect_attn_map) return x, attn_scores x = cross_attn_ffn(x, context, context_lens, e, collect_attn_map) return x class Head(nn.Module): def __init__(self, dim, out_dim, patch_size, eps=1e-6): super().__init__() self.dim = dim self.out_dim = out_dim self.patch_size = patch_size self.eps = eps # layers out_dim = math.prod(patch_size) * out_dim self.norm = WanLayerNorm(dim, eps) self.head = nn.Linear(dim, out_dim) # modulation self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) def forward(self, x, e): r""" Args: x(Tensor): Shape [B, L1, C] e(Tensor): Shape [B, C] """ assert e.dtype == torch.float32 with amp.autocast(dtype=torch.float32): e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) return x class MLPProj(torch.nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.proj = torch.nn.Sequential( torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), torch.nn.LayerNorm(out_dim)) def forward(self, image_embeds): clip_extra_context_tokens = self.proj(image_embeds) return clip_extra_context_tokens class WanModel(ModelMixin, ConfigMixin): r""" Wan diffusion backbone supporting both text-to-video and image-to-video. """ ignore_for_config = [ 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' ] _no_split_modules = ['WanAttentionBlock'] @register_to_config def __init__(self, model_type='t2v', patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, eps=1e-6): r""" Initialize the diffusion model backbone. Args: model_type (`str`, *optional*, defaults to 't2v'): Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) text_len (`int`, *optional*, defaults to 512): Fixed length for text embeddings in_dim (`int`, *optional*, defaults to 16): Input video channels (C_in) dim (`int`, *optional*, defaults to 2048): Hidden dimension of the transformer ffn_dim (`int`, *optional*, defaults to 8192): Intermediate dimension in feed-forward network freq_dim (`int`, *optional*, defaults to 256): Dimension for sinusoidal time embeddings text_dim (`int`, *optional*, defaults to 4096): Input dimension for text embeddings out_dim (`int`, *optional*, defaults to 16): Output video channels (C_out) num_heads (`int`, *optional*, defaults to 16): Number of attention heads num_layers (`int`, *optional*, defaults to 32): Number of transformer blocks window_size (`tuple`, *optional*, defaults to (-1, -1)): Window size for local attention (-1 indicates global attention) qk_norm (`bool`, *optional*, defaults to True): Enable query/key normalization cross_attn_norm (`bool`, *optional*, defaults to False): Enable cross-attention normalization eps (`float`, *optional*, defaults to 1e-6): Epsilon value for normalization layers """ super().__init__() assert model_type in ['t2v', 'i2v'] self.model_type = model_type self.patch_size = patch_size self.text_len = text_len self.in_dim = in_dim self.dim = dim self.ffn_dim = ffn_dim self.freq_dim = freq_dim self.text_dim = text_dim self.out_dim = out_dim self.num_heads = num_heads self.num_layers = num_layers self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps # embeddings self.patch_embedding = nn.Conv3d( in_dim, dim, kernel_size=patch_size, stride=patch_size) self.text_embedding = nn.Sequential( nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), nn.Linear(dim, dim)) self.time_embedding = nn.Sequential( nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) # blocks cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' self.blocks = nn.ModuleList([ WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps) for _ in range(num_layers) ]) # head self.head = Head(dim, out_dim, patch_size, eps) # buffers (don't use register_buffer otherwise dtype will be changed in to()) assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 d = dim // num_heads self.freqs = torch.cat([ rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6)) ], dim=1) if model_type == 'i2v': self.img_emb = MLPProj(1280, dim) # initialize weights self.init_weights() def forward( self, x, t, context, seq_len, depth_tensor=None, clip_fea=None, y=None, words_indices=None, block_id=-1, type=None, timestep=None ): r""" Forward pass through the diffusion model Args: x (List[Tensor]): List of input video tensors, each with shape [C_in, F, H, W] t (Tensor): Diffusion timesteps tensor of shape [B] context (List[Tensor]): List of text embeddings each with shape [L, C] seq_len (`int`): Maximum sequence length for positional encoding clip_fea (Tensor, *optional*): CLIP image features for image-to-video mode y (List[Tensor], *optional*): Conditional video inputs for image-to-video mode, same shape as x Returns: List[Tensor]: List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] """ if self.model_type == 'i2v': assert clip_fea is not None and y is not None # params device = self.patch_embedding.weight.device if self.freqs.device != device: self.freqs = self.freqs.to(device) if y is not None: x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] # embeddings x = [self.patch_embedding(u.unsqueeze(0)) for u in x] grid_sizes = torch.stack( [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) x = [u.flatten(2).transpose(1, 2) for u in x] seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) assert seq_lens.max() <= seq_len x = torch.cat([ torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x ]) # 1, 32760, 1536 # time embeddings with amp.autocast(dtype=torch.float32): e = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t).float()) e0 = self.time_projection(e).unflatten(1, (6, self.dim)) assert e.dtype == torch.float32 and e0.dtype == torch.float32 # e0 1, 6, 1536 # context context_lens = None context = self.text_embedding( torch.stack([ torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context ])) # 1, 512, 1536 if clip_fea is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim context = torch.concat([context_clip, context], dim=1) # arguments kwargs = dict( e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=self.freqs, context=context, context_lens=context_lens, depth_tensor=depth_tensor, depth_tensor_lens=None, collect_attn_map=False) save_block_id = block_id attn_map = None binary_mask = None for i, block in enumerate(self.blocks): kwargs["collect_attn_map"] = False if i == save_block_id: kwargs["collect_attn_map"] = True x, attn_map = block(x, **kwargs) else: x = block(x, **kwargs) # head x = self.head(x, e) # unpatchify x = self.unpatchify(x, grid_sizes) if save_block_id != -1 and words_indices is not None: binary_mask = self.generate_attention_mask( attention_map=attn_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context target_word_indices=words_indices, grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch target_x_shape=x[0].shape, # channel, frames, h, W batch_index=0, # Process the first item in the batch head_index=None, # Average over heads word_aggregation_method='mean' ) return [u.float() for u in x], binary_mask def unpatchify(self, x, grid_sizes): r""" Reconstruct video tensors from patch embeddings. Args: x (List[Tensor]): List of patchified features, each with shape [L, C_out * prod(patch_size)] grid_sizes (Tensor): Original spatial-temporal grid dimensions before patching, shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) Returns: List[Tensor]: Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] """ c = self.out_dim out = [] for u, v in zip(x, grid_sizes.tolist()): u = u[:math.prod(v)].view(*v, *self.patch_size, c) u = torch.einsum('fhwpqrc->cfphqwr', u) u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) out.append(u) return out def init_weights(self): r""" Initialize model parameters using Xavier initialization. """ # basic init for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) # init embeddings nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) for m in self.text_embedding.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=.02) for m in self.time_embedding.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=.02) # init output layer nn.init.zeros_(self.head.head.weight) @torch.no_grad() # Usually don't need gradients for mask generation def generate_attention_mask( self, attention_map: torch.Tensor, grid_sizes: torch.Tensor, target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W) batch_index: int = 0, target_word_indices: Union[List[int], slice] = None, head_index: Optional[int] = None, # Process single head or average word_aggregation_method: str = 'mean', # How to combine scores for multiple words upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear' upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear' output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold ) -> torch.Tensor: """ Generates a binary mask from an attention map based on attention towards target words. The mask identifies regions in the video (x) that attend strongly to the specified context words, exceeding a given threshold. The mask has the same dimensions as x. Args: attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx]. Lx = flattened video tokens (patches), Lctx = context tokens (words). target_word_indices (Union[List[int], slice]): Indices or slice for the target word(s) in the Lctx dimension. grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch) for each batch item, corresponding to Lx. F, H_patch, W_patch should be integers. target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W], matching the original video tensor x. threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True), otherwise 0 (False). batch_index (int, optional): Batch item to process. Defaults to 0. head_index (Optional[int], optional): Specific head to use. If None, average attention across all heads. Defaults to None. word_aggregation_method (str, optional): How to aggregate scores if multiple target_word_indices are given ('mean', 'sum', 'max'). Defaults to 'mean'. upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions. Defaults to 'nearest'. upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension. Defaults to 'nearest'. output_dtype (torch.dtype, optional): Data type of the output mask. Defaults to torch.bool. Returns: torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W]. Raises: TypeError: If inputs are not torch.Tensors. ValueError: If tensor dimensions or indices are invalid, or if aggregation/upsample modes are unknown. IndexError: If batch_index or head_index are out of bounds. """ import torch.nn.functional as F # --- Input Validation --- if not isinstance(attention_map, torch.Tensor): raise TypeError("attention_map must be a torch.Tensor") if not isinstance(grid_sizes, torch.Tensor): raise TypeError("grid_sizes must be a torch.Tensor") if attention_map.dim() != 4: raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims") if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3: raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}") if len(target_x_shape) != 4: raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}") B, H, Lx, Lctx = attention_map.shape C_out, T_out, H_out, W_out = target_x_shape if not 0 <= batch_index < B: raise IndexError(f"batch_index {batch_index} out of range for batch size {B}") if head_index is not None and not 0 <= head_index < H: raise IndexError(f"head_index {head_index} out of range for head count {H}") if word_aggregation_method not in ['mean', 'sum', 'max']: raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}") if upsample_mode_spatial not in ['nearest', 'bilinear']: raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}") if upsample_mode_temporal not in ['nearest', 'linear']: raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}") # --- Select Head(s) --- if head_index is None: # Average across heads. Shape -> [Lx, Lctx] attn_map_processed = attention_map[batch_index].mean(dim=0) else: # Select specific head. Shape -> [Lx, Lctx] attn_map_processed = attention_map[batch_index, head_index] # --- Select and Aggregate Word Attention --- # Ensure target_word_indices are valid before slicing if isinstance(target_word_indices, slice): _slice_indices = range(*target_word_indices.indices(Lctx)) if not _slice_indices: # Empty slice num_words = 0 elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check num_words = len(_slice_indices) # Proceed cautiously or add stricter check else: num_words = len(_slice_indices) word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})" word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words] elif isinstance(target_word_indices, list): # Check indices are within bounds valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx] if not valid_indices: num_words = 0 word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case else: word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words] num_words = len(valid_indices) word_indices_str = str(valid_indices) # Report used indices else: raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}") if num_words > 1: if word_aggregation_method == 'mean': aggregated_scores = word_attn_scores.mean(dim=-1) elif word_aggregation_method == 'sum': aggregated_scores = word_attn_scores.sum(dim=-1) elif word_aggregation_method == 'max': aggregated_scores = word_attn_scores.max(dim=-1).values # aggregated_scores shape -> [Lx] elif num_words == 1: aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx] else: # No valid words selected return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) # --- Reshape to Video Patch Grid --- # Ensure grid sizes are integers f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist()) actual_num_tokens = f_patch * h_patch * w_patch if actual_num_tokens == 0: return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device) # Handle mismatch between expected tokens (from grid) and actual attention length (Lx) if actual_num_tokens > Lx: # Pad aggregated_scores to actual_num_tokens size padding_size = actual_num_tokens - aggregated_scores.numel() scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0) scores_unpadded = scores_padded # Use the padded version for reshaping # This scenario is less common than Lx > actual_num_tokens elif actual_num_tokens < Lx: scores_unpadded = aggregated_scores[:actual_num_tokens] else: scores_unpadded = aggregated_scores # Shape [actual_num_tokens] try: # Reshape to [F_patch, H_patch, W_patch] attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch) except RuntimeError as e: raise e # --- Upsample to Original Video Resolution --- # Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch] # Note: Assuming attention is channel-agnostic here. grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float # --- SIMPLIFIED LOGIC: Always use 3D interpolation --- target_size_3d = (T_out, H_out, W_out) # Determine the 3D interpolation mode. # Default to 'nearest' unless temporal dimension changes AND 'linear' is requested. if upsample_mode_temporal == 'linear' and f_patch != T_out: upsample_mode_3d = 'trilinear' align_corners_3d = False # align_corners usually False for non-nearest modes else: # Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'. # 'nearest' is generally safer and handles spatial modes implicitly. upsample_mode_3d = 'nearest' align_corners_3d = None # align_corners=None for nearest upsampled_scores_grid = F.interpolate(grid_for_upsample, size=target_size_3d, mode=upsample_mode_3d, align_corners=align_corners_3d) # Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104] # --- END SIMPLIFIED LOGIC --- # Remove batch and channel dims: [T_out, H_out, W_out] upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0) # --- Thresholding --- binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out] # --- Expand Channel Dimension --- # Repeat the mask across the channel dimension C_out # Input shape: [T_out, H_out, W_out] # After unsqueeze(0): [1, T_out, H_out, W_out] # Target shape: [C_out, T_out, H_out, W_out] # This expand operation is valid as explained above. final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out) return final_mask.to(dtype=output_dtype)