File size: 34,498 Bytes
4a3d698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from typing import List, Union, Optional, Tuple
from .attention import flash_attention

__all__ = ['WanModel']


def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
    position = position.type(torch.float64)

    # calculation
    sinusoid = torch.outer(
        position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x


@amp.autocast(enabled=False)
def rope_params(max_seq_len, dim, theta=10000):
    assert dim % 2 == 0
    freqs = torch.outer(
        torch.arange(max_seq_len),
        1.0 / torch.pow(theta,
                        torch.arange(0, dim, 2).to(torch.float64).div(dim)))
    freqs = torch.polar(torch.ones_like(freqs), freqs)
    return freqs


@amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
    n, c = x.size(2), x.size(3) // 2

    # split freqs
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)

    # loop over samples
    output = []
    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
        seq_len = f * h * w

        # precompute multipliers
        x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
            seq_len, n, -1, 2))
        freqs_i = torch.cat([
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
        ],
                            dim=-1).reshape(seq_len, 1, -1)

        # apply rotary embedding
        x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
        x_i = torch.cat([x_i, x[i, seq_len:]])

        # append to collection
        output.append(x_i)
    return torch.stack(output).float()


class WanRMSNorm(nn.Module):

    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return self._norm(x.float()).type_as(x) * self.weight

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)


class WanLayerNorm(nn.LayerNorm):

    def __init__(self, dim, eps=1e-6, elementwise_affine=False):
        super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)

    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return super().forward(x.float()).type_as(x)


class WanSelfAttention(nn.Module):

    def __init__(self,
                 dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 eps=1e-6):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.eps = eps

        # layers
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
        self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

    def forward(self, x, seq_lens, grid_sizes, freqs):
        r"""
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            seq_lens(Tensor): Shape [B]
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim

        # query, key, value function
        def qkv_fn(x):
            q = self.norm_q(self.q(x)).view(b, s, n, d)
            k = self.norm_k(self.k(x)).view(b, s, n, d)
            v = self.v(x).view(b, s, n, d)
            return q, k, v

        q, k, v = qkv_fn(x)

        x = flash_attention(
            q=rope_apply(q, grid_sizes, freqs),
            k=rope_apply(k, grid_sizes, freqs),
            v=v,
            k_lens=seq_lens,
            window_size=self.window_size)

        # output
        x = x.flatten(2)
        x = self.o(x)
        return x


class WanT2VCrossAttention(WanSelfAttention):

    def forward(self, x, context, context_lens, collect_attn_map=False):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        b, n, d = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.norm_q(self.q(x)).view(b, -1, n, d)
        k = self.norm_k(self.k(context)).view(b, -1, n, d)
        v = self.v(context).view(b, -1, n, d)

        if collect_attn_map:
            # visual cross map start
            L1 = x.size(1)
            L2 = context.size(1)
            q_permuted = q.permute(0, 2, 1, 3) # [B, n, L1, d]
            k_permuted = k.permute(0, 2, 1, 3) # [B, n, L2, d]
            scale_factor = 1.0 / math.sqrt(d)
            k_transposed = k_permuted.transpose(-2, -1) # [B, n, d, L2]
            attn_scores = torch.matmul(q_permuted, k_transposed) * scale_factor # [B, n, L1, L2]
            if context_lens is not None:
                mask = torch.arange(L2, device=q.device)[None, None, None, :] >= context_lens.to(q.device)[:, None, None, None]
                attn_scores = attn_scores.masked_fill(mask, -torch.finfo(attn_scores.dtype).max)
            attn_weights = torch.softmax(attn_scores, dim=-1) # [B, n, L1, L2]


        # compute attention
        x = flash_attention(q, k, v, k_lens=context_lens)

        # output
        x = x.flatten(2)
        x = self.o(x)
        
        if collect_attn_map:
            return x, attn_weights 
        
        return x


class WanI2VCrossAttention(WanSelfAttention):

    def __init__(self,
                 dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 eps=1e-6):
        super().__init__(dim, num_heads, window_size, qk_norm, eps)

        self.k_img = nn.Linear(dim, dim)
        self.v_img = nn.Linear(dim, dim)
        # self.alpha = nn.Parameter(torch.zeros((1, )))
        self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

    def forward(self, x, context, context_lens):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        context_img = context[:, :257]
        context = context[:, 257:]
        b, n, d = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.norm_q(self.q(x)).view(b, -1, n, d)
        k = self.norm_k(self.k(context)).view(b, -1, n, d)
        v = self.v(context).view(b, -1, n, d)
        k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
        v_img = self.v_img(context_img).view(b, -1, n, d)
        img_x = flash_attention(q, k_img, v_img, k_lens=None)
        # compute attention
        x = flash_attention(q, k, v, k_lens=context_lens)

        # output
        x = x.flatten(2)
        img_x = img_x.flatten(2)
        x = x + img_x
        x = self.o(x)
        return x


WAN_CROSSATTENTION_CLASSES = {
    't2v_cross_attn': WanT2VCrossAttention,
    'i2v_cross_attn': WanI2VCrossAttention,
}


class WanAttentionBlock(nn.Module):

    def __init__(self,
                 cross_attn_type,
                 dim,
                 ffn_dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=False,
                 eps=1e-6):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps
        # layers
        self.norm1 = WanLayerNorm(dim, eps)
        self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
                                          eps)
        self.norm3 = WanLayerNorm(
            dim, eps,
            elementwise_affine=True) if cross_attn_norm else nn.Identity()
        self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
                                                                      num_heads,
                                                                      (-1, -1),
                                                                      qk_norm,
                                                                      eps)
        self.norm2 = WanLayerNorm(dim, eps)
        self.ffn = nn.Sequential(
            nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
            nn.Linear(ffn_dim, dim))

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)

    def forward(
        self,
        x,
        e,
        seq_lens,
        grid_sizes,
        freqs,
        context,
        context_lens,
        collect_attn_map=False,
        depth_tensor=None,
        depth_tensor_lens=None
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, 6, C]
            seq_lens(Tensor): Shape [B], length of each sequence in batch
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        assert e.dtype == torch.float32
        with amp.autocast(dtype=torch.float32):
            e = (self.modulation + e).chunk(6, dim=1)
        assert e[0].dtype == torch.float32

        # self-attention
        y = self.self_attn(
            self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes,
            freqs)
        with amp.autocast(dtype=torch.float32):
            x = x + y * e[2]

        # cross-attention & ffn function
        def cross_attn_ffn(x, context, context_lens, e, collect_attn_map):
            if collect_attn_map:
                cross_x, attn_scores = self.cross_attn(self.norm3(x), context, context_lens, collect_attn_map) 
            else:
                cross_x = self.cross_attn(self.norm3(x), context, context_lens, collect_attn_map) 
            x = x + cross_x
            y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
            with amp.autocast(dtype=torch.float32):
                x = x + y * e[5]
            if collect_attn_map:
                return x, attn_scores 
            else:
                return x
            
        if collect_attn_map:
            x, attn_scores = cross_attn_ffn(x, context, context_lens, e, collect_attn_map)
            return x, attn_scores 

        x = cross_attn_ffn(x, context, context_lens, e, collect_attn_map)
        return x


class Head(nn.Module):

    def __init__(self, dim, out_dim, patch_size, eps=1e-6):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim
        self.patch_size = patch_size
        self.eps = eps

        # layers
        out_dim = math.prod(patch_size) * out_dim
        self.norm = WanLayerNorm(dim, eps)
        self.head = nn.Linear(dim, out_dim)

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)

    def forward(self, x, e):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            e(Tensor): Shape [B, C]
        """
        assert e.dtype == torch.float32
        with amp.autocast(dtype=torch.float32):
            e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
            x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
        return x


class MLPProj(torch.nn.Module):

    def __init__(self, in_dim, out_dim):
        super().__init__()

        self.proj = torch.nn.Sequential(
            torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
            torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
            torch.nn.LayerNorm(out_dim))

    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens


class WanModel(ModelMixin, ConfigMixin):
    r"""
    Wan diffusion backbone supporting both text-to-video and image-to-video.
    """

    ignore_for_config = [
        'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
    ]
    _no_split_modules = ['WanAttentionBlock']

    @register_to_config
    def __init__(self,
                 model_type='t2v',
                 patch_size=(1, 2, 2),
                 text_len=512,
                 in_dim=16,
                 dim=2048,
                 ffn_dim=8192,
                 freq_dim=256,
                 text_dim=4096,
                 out_dim=16,
                 num_heads=16,
                 num_layers=32,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6):
        r"""
        Initialize the diffusion model backbone.

        Args:
            model_type (`str`, *optional*, defaults to 't2v'):
                Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
            patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
                3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
            text_len (`int`, *optional*, defaults to 512):
                Fixed length for text embeddings
            in_dim (`int`, *optional*, defaults to 16):
                Input video channels (C_in)
            dim (`int`, *optional*, defaults to 2048):
                Hidden dimension of the transformer
            ffn_dim (`int`, *optional*, defaults to 8192):
                Intermediate dimension in feed-forward network
            freq_dim (`int`, *optional*, defaults to 256):
                Dimension for sinusoidal time embeddings
            text_dim (`int`, *optional*, defaults to 4096):
                Input dimension for text embeddings
            out_dim (`int`, *optional*, defaults to 16):
                Output video channels (C_out)
            num_heads (`int`, *optional*, defaults to 16):
                Number of attention heads
            num_layers (`int`, *optional*, defaults to 32):
                Number of transformer blocks
            window_size (`tuple`, *optional*, defaults to (-1, -1)):
                Window size for local attention (-1 indicates global attention)
            qk_norm (`bool`, *optional*, defaults to True):
                Enable query/key normalization
            cross_attn_norm (`bool`, *optional*, defaults to False):
                Enable cross-attention normalization
            eps (`float`, *optional*, defaults to 1e-6):
                Epsilon value for normalization layers
        """

        super().__init__()

        assert model_type in ['t2v', 'i2v']
        self.model_type = model_type

        self.patch_size = patch_size
        self.text_len = text_len
        self.in_dim = in_dim
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.freq_dim = freq_dim
        self.text_dim = text_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # embeddings
        self.patch_embedding = nn.Conv3d(
            in_dim, dim, kernel_size=patch_size, stride=patch_size)
        self.text_embedding = nn.Sequential(
            nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
            nn.Linear(dim, dim))

        self.time_embedding = nn.Sequential(
            nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
        self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))

        # blocks
        cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
        self.blocks = nn.ModuleList([
            WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
                              window_size, qk_norm, cross_attn_norm, eps)
            for _ in range(num_layers)
        ])

        # head
        self.head = Head(dim, out_dim, patch_size, eps)

        # buffers (don't use register_buffer otherwise dtype will be changed in to())
        assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
        d = dim // num_heads
        self.freqs = torch.cat([
            rope_params(1024, d - 4 * (d // 6)),
            rope_params(1024, 2 * (d // 6)),
            rope_params(1024, 2 * (d // 6))
        ],
                               dim=1)

        if model_type == 'i2v':
            self.img_emb = MLPProj(1280, dim)

        # initialize weights
        self.init_weights()

    def forward(
        self,
        x,
        t,
        context,
        seq_len,
        depth_tensor=None,
        clip_fea=None,
        y=None,
        words_indices=None,
        block_id=-1,
        type=None,
        timestep=None
    ):
        r"""
        Forward pass through the diffusion model

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        if self.model_type == 'i2v':
            assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)

        if y is not None:
            x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])
        
        # 1, 32760, 1536


        # time embeddings
        with amp.autocast(dtype=torch.float32):
            e = self.time_embedding(
                sinusoidal_embedding_1d(self.freq_dim, t).float())
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
            assert e.dtype == torch.float32 and e0.dtype == torch.float32
        # e0 1, 6, 1536

        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ])) # 1, 512, 1536
        
        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)
        
        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens,
            depth_tensor=depth_tensor,
            depth_tensor_lens=None,
            collect_attn_map=False)


        save_block_id = block_id 
        attn_map = None
        binary_mask = None
        for i, block in enumerate(self.blocks):
            kwargs["collect_attn_map"] = False
            if i == save_block_id:
                kwargs["collect_attn_map"] = True
                x, attn_map = block(x, **kwargs)
            else:
                x = block(x, **kwargs)

        # head
        x = self.head(x, e)

        # unpatchify
        x = self.unpatchify(x, grid_sizes)

        if save_block_id != -1 and words_indices is not None:
            binary_mask = self.generate_attention_mask(
                            attention_map=attn_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context
                            target_word_indices=words_indices,
                            grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch
                            target_x_shape=x[0].shape, # channel, frames, h, W
                            batch_index=0, # Process the first item in the batch
                            head_index=None, # Average over heads
                            word_aggregation_method='mean'
                            )

        return [u.float() for u in x], binary_mask

    def unpatchify(self, x, grid_sizes):
        r"""
        Reconstruct video tensors from patch embeddings.

        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)

        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
        """

        c = self.out_dim
        out = []
        for u, v in zip(x, grid_sizes.tolist()):
            u = u[:math.prod(v)].view(*v, *self.patch_size, c)
            u = torch.einsum('fhwpqrc->cfphqwr', u)
            u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
            out.append(u)
        return out

    def init_weights(self):
        r"""
        Initialize model parameters using Xavier initialization.
        """

        # basic init
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

        # init embeddings
        nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
        for m in self.text_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=.02)
        for m in self.time_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=.02)

        # init output layer
        nn.init.zeros_(self.head.head.weight)

    @torch.no_grad() # Usually don't need gradients for mask generation
    def generate_attention_mask(
        self,
        attention_map: torch.Tensor,
        grid_sizes: torch.Tensor,
        target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W)
        batch_index: int = 0,
        target_word_indices: Union[List[int], slice] = None,
        head_index: Optional[int] = None, # Process single head or average
        word_aggregation_method: str = 'mean', # How to combine scores for multiple words
        upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear'
        upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear'
        output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold
    ) -> torch.Tensor:
        """
        Generates a binary mask from an attention map based on attention towards target words.

        The mask identifies regions in the video (x) that attend strongly to the specified
        context words, exceeding a given threshold. The mask has the same dimensions as x.

        Args:
            attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx].
                                        Lx = flattened video tokens (patches),
                                        Lctx = context tokens (words).
            target_word_indices (Union[List[int], slice]): Indices or slice for the target
                                                        word(s) in the Lctx dimension.
            grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch)
                                    for each batch item, corresponding to Lx.
                                    F, H_patch, W_patch should be integers.
            target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W],
                                                        matching the original video tensor x.
            threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True),
                            otherwise 0 (False).
            batch_index (int, optional): Batch item to process. Defaults to 0.
            head_index (Optional[int], optional): Specific head to use. If None, average
                                                attention across all heads. Defaults to None.
            word_aggregation_method (str, optional): How to aggregate scores if multiple
                                                    target_word_indices are given ('mean',
                                                    'sum', 'max'). Defaults to 'mean'.
            upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions.
                                            Defaults to 'nearest'.
            upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension.
                                                Defaults to 'nearest'.
            output_dtype (torch.dtype, optional): Data type of the output mask.
                                                Defaults to torch.bool.

        Returns:
            torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W].

        Raises:
            TypeError: If inputs are not torch.Tensors.
            ValueError: If tensor dimensions or indices are invalid, or if
                        aggregation/upsample modes are unknown.
            IndexError: If batch_index or head_index are out of bounds.
        """
        import torch.nn.functional as F
        
        # --- Input Validation ---
        if not isinstance(attention_map, torch.Tensor):
            raise TypeError("attention_map must be a torch.Tensor")
        if not isinstance(grid_sizes, torch.Tensor):
            raise TypeError("grid_sizes must be a torch.Tensor")
        if attention_map.dim() != 4:
            raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims")
        if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3:
            raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}")
        if len(target_x_shape) != 4:
            raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}")

        B, H, Lx, Lctx = attention_map.shape
        C_out, T_out, H_out, W_out = target_x_shape

        if not 0 <= batch_index < B:
            raise IndexError(f"batch_index {batch_index} out of range for batch size {B}")
        if head_index is not None and not 0 <= head_index < H:
            raise IndexError(f"head_index {head_index} out of range for head count {H}")
        if word_aggregation_method not in ['mean', 'sum', 'max']:
            raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}")
        if upsample_mode_spatial not in ['nearest', 'bilinear']:
            raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}")
        if upsample_mode_temporal not in ['nearest', 'linear']:
            raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}")


        # --- Select Head(s) ---
        if head_index is None:
            # Average across heads. Shape -> [Lx, Lctx]
            attn_map_processed = attention_map[batch_index].mean(dim=0)
        else:
            # Select specific head. Shape -> [Lx, Lctx]
            attn_map_processed = attention_map[batch_index, head_index]

        # --- Select and Aggregate Word Attention ---
        # Ensure target_word_indices are valid before slicing
        if isinstance(target_word_indices, slice):
            _slice_indices = range(*target_word_indices.indices(Lctx))
            if not _slice_indices: # Empty slice
                num_words = 0
            elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check
                num_words = len(_slice_indices) # Proceed cautiously or add stricter check
            else:
                num_words = len(_slice_indices)
            word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})"
            word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words]
        elif isinstance(target_word_indices, list):
            # Check indices are within bounds
            valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx]
            if not valid_indices:
                num_words = 0
                word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case
            else:
                word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words]
                num_words = len(valid_indices)
            word_indices_str = str(valid_indices) # Report used indices
        else:
            raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}")

        if num_words > 1:
            if word_aggregation_method == 'mean':
                aggregated_scores = word_attn_scores.mean(dim=-1)
            elif word_aggregation_method == 'sum':
                aggregated_scores = word_attn_scores.sum(dim=-1)
            elif word_aggregation_method == 'max':
                aggregated_scores = word_attn_scores.max(dim=-1).values
            # aggregated_scores shape -> [Lx]
        elif num_words == 1:
            aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx]
        else: # No valid words selected
            return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)

        # --- Reshape to Video Patch Grid ---
        # Ensure grid sizes are integers
        f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist())
        actual_num_tokens = f_patch * h_patch * w_patch

        if actual_num_tokens == 0:
            return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)

        # Handle mismatch between expected tokens (from grid) and actual attention length (Lx)
        if actual_num_tokens > Lx:
            # Pad aggregated_scores to actual_num_tokens size
            padding_size = actual_num_tokens - aggregated_scores.numel()
            scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0)
            scores_unpadded = scores_padded # Use the padded version for reshaping
            # This scenario is less common than Lx > actual_num_tokens
        elif actual_num_tokens < Lx:
            scores_unpadded = aggregated_scores[:actual_num_tokens]
        else:
            scores_unpadded = aggregated_scores # Shape [actual_num_tokens]

        try:
            # Reshape to [F_patch, H_patch, W_patch]
            attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch)
        except RuntimeError as e:
            raise e

        # --- Upsample to Original Video Resolution ---
        # Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch]
        # Note: Assuming attention is channel-agnostic here.
        grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float

    
        # --- SIMPLIFIED LOGIC: Always use 3D interpolation ---
        target_size_3d = (T_out, H_out, W_out)

        # Determine the 3D interpolation mode.
        # Default to 'nearest' unless temporal dimension changes AND 'linear' is requested.
        if upsample_mode_temporal == 'linear' and f_patch != T_out:
            upsample_mode_3d = 'trilinear'
            align_corners_3d = False # align_corners usually False for non-nearest modes
        else:
            # Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'.
            # 'nearest' is generally safer and handles spatial modes implicitly.
            upsample_mode_3d = 'nearest'
            align_corners_3d = None # align_corners=None for nearest

        upsampled_scores_grid = F.interpolate(grid_for_upsample,
                                        size=target_size_3d,
                                        mode=upsample_mode_3d,
                                        align_corners=align_corners_3d)
        # Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104]

        # --- END SIMPLIFIED LOGIC ---
    
        # Remove batch and channel dims: [T_out, H_out, W_out]
        upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0)

        # --- Thresholding ---
        binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out]

        # --- Expand Channel Dimension ---
        # Repeat the mask across the channel dimension C_out
        # Input shape: [T_out, H_out, W_out]
        # After unsqueeze(0): [1, T_out, H_out, W_out]
        # Target shape:      [C_out, T_out, H_out, W_out]
        # This expand operation is valid as explained above.
        final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out)

        return final_mask.to(dtype=output_dtype)