WesScivetti commited on
Commit
971eb0b
·
1 Parent(s): 8e7ac23
Files changed (2) hide show
  1. app.py +10 -6
  2. requirements.txt +2 -1
app.py CHANGED
@@ -2,22 +2,26 @@ import gradio as gr
2
  from transformers import pipeline
3
 
4
  # Load the pipeline (token classification)
5
- token_classifier = pipeline("token-classification", model="WesScivetti/SNACS_English", aggregation_strategy="simple")
6
 
 
 
7
  def classify_tokens(text):
 
 
 
8
  results = token_classifier(text)
9
  output = ""
10
  for entity in results:
11
  output += f"{entity['word']} ({entity['entity_group']}, score={entity['score']:.2f})\n"
12
  return output.strip()
13
 
14
- # Gradio Interface
15
  iface = gr.Interface(
16
  fn=classify_tokens,
17
- inputs=gr.Textbox(lines=4, placeholder="Enter a sentence..."),
18
  outputs="text",
19
- title="Token Classification with Transformers",
20
- description="Named Entity Recognition (NER) using Hugging Face Transformers"
21
  )
22
 
23
- iface.launch()
 
2
  from transformers import pipeline
3
 
4
  # Load the pipeline (token classification)
5
+ #token_classifier = pipeline("token-classification", model="WesScivetti/SNACS_English", aggregation_strategy="simple")
6
 
7
+
8
+ @spaces.GPU # <-- required for ZeroGPU
9
  def classify_tokens(text):
10
+ token_classifier = pipeline("token-classification", model="WesScivetti/SNACS_English",
11
+ aggregation_strategy="simple")
12
+
13
  results = token_classifier(text)
14
  output = ""
15
  for entity in results:
16
  output += f"{entity['word']} ({entity['entity_group']}, score={entity['score']:.2f})\n"
17
  return output.strip()
18
 
 
19
  iface = gr.Interface(
20
  fn=classify_tokens,
21
+ inputs=gr.Textbox(lines=4, placeholder="Enter text to be classified..."),
22
  outputs="text",
23
+ title="SNACS Tagging in English",
24
+ description="SNACS Tagging in English"
25
  )
26
 
27
+ iface.launch()
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  transformers==4.52.3
2
  torch
3
- gradio
 
 
1
  transformers==4.52.3
2
  torch
3
+ gradio
4
+ spaces