Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import pipeline | |
import spaces | |
# Load the pipeline (token classification) | |
#token_classifier = pipeline("token-classification", model="WesScivetti/SNACS_English", aggregation_strategy="simple") | |
# <-- required for ZeroGPU | |
def classify_tokens(text): | |
token_classifier = pipeline("token-classification", model="WesScivetti/SNACS_English", | |
aggregation_strategy="simple") | |
results = token_classifier(text) | |
output = "" | |
for entity in results: | |
output += f"{entity['word']} ({entity['entity_group']}, score={entity['score']:.2f})\n" | |
return output.strip() | |
iface = gr.Interface( | |
fn=classify_tokens, | |
inputs=gr.Textbox(lines=4, placeholder="Enter text to be classified..."), | |
outputs="text", | |
title="SNACS Tagging in English", | |
description="SNACS Tagging in English" | |
) | |
iface.launch() |