Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
import os | |
import shutil | |
import glob | |
import base64 | |
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from torch.utils.data import Dataset, DataLoader | |
import csv | |
import time | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import zipfile | |
import math | |
from PIL import Image | |
import random | |
import logging | |
from datetime import datetime | |
import pytz | |
from diffusers import StableDiffusionPipeline | |
from urllib.parse import quote | |
import cv2 | |
# Logging setup | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Page Configuration | |
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded") | |
# Model Configurations | |
class ModelConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
model_type: str = "causal_lm" | |
def model_path(self): | |
return f"models/{self.name}" | |
class DiffusionConfig: | |
name: str | |
base_model: str | |
size: str | |
def model_path(self): | |
return f"diffusion_models/{self.name}" | |
# Datasets | |
class SFTDataset(Dataset): | |
def __init__(self, data, tokenizer, max_length=128): | |
self.data = data | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, idx): | |
prompt = self.data[idx]["prompt"] | |
response = self.data[idx]["response"] | |
full_text = f"{prompt} {response}" | |
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") | |
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") | |
input_ids = full_encoding["input_ids"].squeeze() | |
attention_mask = full_encoding["attention_mask"].squeeze() | |
labels = input_ids.clone() | |
prompt_len = prompt_encoding["input_ids"].shape[1] | |
if prompt_len < self.max_length: | |
labels[:prompt_len] = -100 | |
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} | |
class DiffusionDataset(Dataset): | |
def __init__(self, images, texts): | |
self.images = images | |
self.texts = texts | |
def __len__(self): | |
return len(self.images) | |
def __getitem__(self, idx): | |
return {"image": self.images[idx], "text": self.texts[idx]} | |
# Model Builders | |
class ModelBuilder: | |
def __init__(self): | |
self.config = None | |
self.model = None | |
self.tokenizer = None | |
self.sft_data = None | |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): | |
self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
if config: | |
self.config = config | |
return self | |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): | |
self.sft_data = [] | |
with open(csv_path, "r") as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) | |
dataset = SFTDataset(self.sft_data, self.tokenizer) | |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) | |
self.model.train() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(device) | |
for epoch in range(epochs): | |
total_loss = 0 | |
for batch in dataloader: | |
optimizer.zero_grad() | |
input_ids = batch["input_ids"].to(device) | |
attention_mask = batch["attention_mask"].to(device) | |
labels = batch["labels"].to(device) | |
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) | |
loss = outputs.loss | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") | |
return self | |
def save_model(self, path: str): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.model.save_pretrained(path) | |
self.tokenizer.save_pretrained(path) | |
def evaluate(self, prompt: str): | |
self.model.eval() | |
with torch.no_grad(): | |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) | |
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
class DiffusionBuilder: | |
def __init__(self): | |
self.config = None | |
self.pipeline = None | |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): | |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) | |
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu") | |
if config: | |
self.config = config | |
return self | |
def fine_tune_sft(self, images, texts, epochs=3): | |
dataset = DiffusionDataset(images, texts) | |
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) | |
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) | |
self.pipeline.unet.train() | |
for epoch in range(epochs): | |
total_loss = 0 | |
for batch in dataloader: | |
optimizer.zero_grad() | |
image = batch["image"].to(self.pipeline.device) | |
text = batch["text"] | |
latents = self.pipeline.vae.encode(image).latent_dist.sample() | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) | |
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) | |
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] | |
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample | |
loss = torch.nn.functional.mse_loss(pred_noise, noise) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") | |
return self | |
def save_model(self, path: str): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.pipeline.save_pretrained(path) | |
def generate(self, prompt: str): | |
return self.pipeline(prompt, num_inference_steps=50).images[0] | |
# Utilities | |
def get_download_link(file_path, mime_type="text/plain", label="Download"): | |
with open(file_path, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' | |
def zip_directory(directory_path, zip_path): | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(directory_path): | |
for file in files: | |
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) | |
def get_model_files(model_type="causal_lm"): | |
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" | |
return [d for d in glob.glob(path) if os.path.isdir(d)] | |
def get_gallery_files(file_types): | |
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) | |
def generate_filename(text_line): | |
central = pytz.timezone('US/Central') | |
timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p") | |
safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50]) | |
return f"{timestamp}_{safe_text}.png" | |
def display_search_links(query): | |
search_urls = { | |
"ArXiv": f"https://arxiv.org/search/?query={quote(query)}", | |
"Wikipedia": f"https://en.wikipedia.org/wiki/{quote(query)}", | |
"Google": f"https://www.google.com/search?q={quote(query)}", | |
"YouTube": f"https://www.youtube.com/results?search_query={quote(query)}" | |
} | |
return ' '.join([f"[{name}]({url})" for name, url in search_urls.items()]) | |
def detect_cameras(): | |
cameras = [] | |
for i in range(2): # Check first two indices | |
cap = cv2.VideoCapture(i) | |
if cap.isOpened(): | |
cameras.append(i) | |
cap.release() | |
return cameras | |
# Agent Classes | |
class NLPAgent: | |
def __init__(self, model, tokenizer): | |
self.model = model | |
self.tokenizer = tokenizer | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model.to(self.device) | |
def generate(self, prompt: str) -> str: | |
self.model.eval() | |
with torch.no_grad(): | |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) | |
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def plan_party(self, task: str) -> pd.DataFrame: | |
search_result = "Latest trends for 2025: Gold-plated Batman statues, VR superhero battles." | |
prompt = f"Given this context: '{search_result}'\n{task}" | |
plan_text = self.generate(prompt) | |
st.markdown(f"Search Links: {display_search_links('superhero party trends')}", unsafe_allow_html=True) | |
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)} | |
travel_times = {loc: calculate_cargo_travel_time(coords, locations["Wayne Manor"]) for loc, coords in locations.items() if loc != "Wayne Manor"} | |
data = [ | |
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Idea": "Gold-plated Batman statues"}, | |
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Idea": "VR superhero battles"} | |
] | |
return pd.DataFrame(data) | |
class CVAgent: | |
def __init__(self, pipeline): | |
self.pipeline = pipeline | |
def generate(self, prompt: str) -> Image.Image: | |
return self.pipeline(prompt, num_inference_steps=50).images[0] | |
def enhance_images(self, task: str) -> pd.DataFrame: | |
search_result = "Latest superhero art trends: Neon outlines, 3D holograms." | |
prompt = f"Given this context: '{search_result}'\n{task}" | |
st.markdown(f"Search Links: {display_search_links('superhero art trends')}", unsafe_allow_html=True) | |
data = [ | |
{"Image Theme": "Batman", "Enhancement": "Neon outlines"}, | |
{"Image Theme": "Iron Man", "Enhancement": "3D holograms"} | |
] | |
return pd.DataFrame(data) | |
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: | |
def to_radians(degrees: float) -> float: | |
return degrees * (math.pi / 180) | |
lat1, lon1 = map(to_radians, origin_coords) | |
lat2, lon2 = map(to_radians, destination_coords) | |
EARTH_RADIUS_KM = 6371.0 | |
dlon = lon2 - lon1 | |
dlat = lat2 - lat1 | |
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) | |
c = 2 * math.asin(math.sqrt(a)) | |
distance = EARTH_RADIUS_KM * c | |
actual_distance = distance * 1.1 | |
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 | |
return round(flight_time, 2) | |
# Main App | |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)") | |
# Sidebar Galleries | |
st.sidebar.header("Shared Galleries 🎨") | |
for gallery_type, file_types, emoji in [ | |
("Images 📸", ["png", "jpg", "jpeg"], "🖼️"), | |
("Videos 🎥", ["mp4"], "🎬"), | |
("Audio 🎶", ["mp3"], "🎵") | |
]: | |
st.sidebar.subheader(f"{gallery_type} {emoji}") | |
files = get_gallery_files(file_types) | |
if files: | |
cols_num = st.sidebar.slider(f"{gallery_type} Columns", 1, 5, 3, key=f"{gallery_type}_cols") | |
cols = st.sidebar.columns(cols_num) | |
for idx, file in enumerate(files[:cols_num * 2]): | |
with cols[idx % cols_num]: | |
if "Images" in gallery_type: | |
st.image(Image.open(file), caption=file, use_column_width=True) | |
elif "Videos" in gallery_type: | |
st.video(file) | |
elif "Audio" in gallery_type: | |
st.audio(file) | |
st.sidebar.subheader("Model Management 🗂️") | |
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"]) | |
model_dirs = get_model_files("causal_lm" if "NLP" in model_type else "diffusion") | |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) | |
if selected_model != "None" and st.sidebar.button("Load Model 📂"): | |
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() | |
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") | |
builder.load_model(selected_model, config) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
st.rerun() | |
# Tabs | |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([ | |
"Build Titan 🌱", | |
"Fine-Tune NLP 🧠", | |
"Fine-Tune CV 🎨", | |
"Test Titans 🧪", | |
"Agentic RAG 🌀", | |
"Camera Inputs 📷" | |
]) | |
with tab1: | |
st.header("Build Your Titan 🌱") | |
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type") | |
base_model = st.selectbox( | |
"Select Tiny Model", | |
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if "NLP" in model_type else ["stabilityai/stable-diffusion-2-1", "CompVis/stable-diffusion-v1-4"] | |
) | |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") | |
if st.button("Download Model ⬇️"): | |
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=model_name, base_model=base_model, size="small") | |
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() | |
builder.load_model(base_model, config) | |
builder.save_model(config.model_path) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
st.rerun() | |
with tab2: | |
st.header("Fine-Tune NLP Titan 🧠 (Word Wizardry!)") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False) or not isinstance(st.session_state['builder'], ModelBuilder): | |
st.warning("Load an NLP Titan first! ⚠️") | |
else: | |
uploaded_csv = st.file_uploader("Upload CSV for NLP SFT", type="csv", key="nlp_csv") | |
if uploaded_csv and st.button("Tune the Wordsmith 🔧"): | |
csv_path = f"nlp_sft_data_{int(time.time())}.csv" | |
with open(csv_path, "wb") as f: | |
f.write(uploaded_csv.read()) | |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" | |
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") | |
st.session_state['builder'].config = new_config | |
st.session_state['builder'].fine_tune_sft(csv_path) | |
st.session_state['builder'].save_model(new_config.model_path) | |
zip_path = f"{new_config.model_path}.zip" | |
zip_directory(new_config.model_path, zip_path) | |
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned NLP Titan"), unsafe_allow_html=True) | |
with tab3: | |
st.header("Fine-Tune CV Titan 🎨 (Vision Vibes!)") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False) or not isinstance(st.session_state['builder'], DiffusionBuilder): | |
st.warning("Load a CV Titan first! ⚠️") | |
else: | |
uploaded_files = st.file_uploader("Upload Images/Videos", type=["png", "jpg", "jpeg", "mp4", "mp3"], accept_multiple_files=True, key="cv_upload") | |
text_input = st.text_area("Enter Text (one line per image)", "Batman Neon\nIron Man Hologram\nThor Lightning", key="cv_text") | |
if uploaded_files and st.button("Tune the Visionary 🖌️"): | |
images = [Image.open(f) for f in uploaded_files if f.type.startswith("image")] | |
texts = text_input.splitlines() | |
if len(images) > len(texts): | |
texts.extend([""] * (len(images) - len(texts))) | |
elif len(texts) > len(images): | |
texts = texts[:len(images)] | |
st.session_state['builder'].fine_tune_sft(images, texts) | |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" | |
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") | |
st.session_state['builder'].config = new_config | |
st.session_state['builder'].save_model(new_config.model_path) | |
for img, text in zip(images, texts): | |
filename = generate_filename(text) | |
img.save(filename) | |
st.image(img, caption=filename) | |
zip_path = f"{new_config.model_path}.zip" | |
zip_directory(new_config.model_path, zip_path) | |
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned CV Titan"), unsafe_allow_html=True) | |
with tab4: | |
st.header("Test Titans 🧪 (Brains & Eyes!)") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
st.subheader("NLP Test 🧠") | |
test_prompt = st.text_area("Enter NLP Prompt", "Plan a superhero party!", key="nlp_test") | |
if st.button("Test NLP Titan ▶️"): | |
result = st.session_state['builder'].evaluate(test_prompt) | |
st.write(f"**Response**: {result}") | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
st.subheader("CV Test 🎨") | |
test_prompt = st.text_area("Enter CV Prompt", "Superhero in neon style", key="cv_test") | |
if st.button("Test CV Titan ▶️"): | |
image = st.session_state['builder'].generate(test_prompt) | |
st.image(image, caption="Generated Image") | |
cameras = detect_cameras() | |
if cameras: | |
st.subheader("Camera Snapshot Test 📷") | |
camera_idx = st.selectbox("Select Camera", cameras, key="camera_select") | |
snapshot_text = st.text_input("Snapshot Text", "Camera Snap", key="snap_text") | |
if st.button("Capture Snapshot 📸"): | |
cap = cv2.VideoCapture(camera_idx) | |
ret, frame = cap.read() | |
if ret: | |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
img = Image.fromarray(rgb_frame) | |
filename = generate_filename(snapshot_text) | |
img.save(filename) | |
st.image(img, caption=filename) | |
cap.release() | |
with tab5: | |
st.header("Agentic RAG 🌀 (Smart Plans & Visions!)") | |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
st.warning("Load a Titan first! ⚠️") | |
else: | |
if isinstance(st.session_state['builder'], ModelBuilder): | |
st.subheader("NLP RAG Party 🧠") | |
if st.button("Run NLP RAG Demo 🎉"): | |
agent = NLPAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer) | |
task = "Plan a luxury superhero-themed party at Wayne Manor." | |
plan_df = agent.plan_party(task) | |
st.dataframe(plan_df) | |
elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
st.subheader("CV RAG Enhance 🎨") | |
if st.button("Run CV RAG Demo 🖌️"): | |
agent = CVAgent(st.session_state['builder'].pipeline) | |
task = "Enhance superhero images with 2025 trends." | |
enhance_df = agent.enhance_images(task) | |
st.dataframe(enhance_df) | |
with tab6: | |
st.header("Camera Inputs 📷 (Live Feed Fun!)") | |
cameras = detect_cameras() | |
if not cameras: | |
st.warning("No cameras detected! ⚠️") | |
else: | |
st.write(f"Detected {len(cameras)} cameras!") | |
for idx in cameras: | |
st.subheader(f"Camera {idx}") | |
cap = cv2.VideoCapture(idx) | |
if st.button(f"Capture from Camera {idx} 📸", key=f"cap_{idx}"): | |
ret, frame = cap.read() | |
if ret: | |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
img = Image.fromarray(rgb_frame) | |
filename = generate_filename(f"Camera_{idx}_snap") | |
img.save(filename) | |
st.image(img, caption=filename) | |
cap.release() | |
# Preload demo files | |
demo_images = ["20250319_010000_AM_Batman.png", "20250319_010001_AM_IronMan.png", "20250319_010002_AM_Thor.png"] | |
demo_videos = ["20250319_010000_AM_Batman.mp4", "20250319_010001_AM_IronMan.mp4", "20250319_010002_AM_Thor.mp4"] | |
for img in demo_images: | |
if not os.path.exists(img): | |
Image.new("RGB", (100, 100)).save(img) | |
for vid in demo_videos: | |
if not os.path.exists(vid): | |
with open(vid, "wb") as f: | |
f.write(b"") # Dummy file | |
# Demo SFT Dataset | |
st.subheader("Diffusion SFT Demo Dataset 🎨") | |
demo_texts = ["Batman Neon", "Iron Man Hologram", "Thor Lightning"] | |
demo_code = "\n".join([f"{i+1}. {text} -> {demo_images[i]}" for i, text in enumerate(demo_texts)]) | |
st.code(demo_code, language="text") | |
if st.button("Download Demo CSV 📝"): | |
csv_path = f"demo_diffusion_sft_{int(time.time())}.csv" | |
with open(csv_path, "w", newline="") as f: | |
writer = csv.writer(f) | |
writer.writerow(["image", "text"]) | |
for img, text in zip(demo_images, demo_texts): | |
writer.writerow([img, text]) | |
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True) |