Spaces:
Sleeping
Sleeping
import aiofiles | |
import asyncio | |
import base64 | |
import cv2 | |
import fitz | |
import glob | |
import io | |
import json | |
import logging | |
import os | |
import pandas as pd | |
import pytz | |
import random | |
import re | |
import requests | |
import shutil | |
import streamlit as st | |
import sys | |
import time | |
import torch | |
import zipfile | |
from audio_recorder_streamlit import audio_recorder | |
from contextlib import redirect_stdout | |
from dataclasses import dataclass | |
from datetime import datetime | |
from diffusers import StableDiffusionPipeline | |
from io import BytesIO | |
from moviepy.editor import VideoFileClip | |
from openai import OpenAI | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel | |
from typing import Optional | |
# Initialize OpenAI client | |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) | |
# Logging setup | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
log_records = [] | |
class LogCaptureHandler(logging.Handler): | |
def emit(self, record): | |
log_records.append(record) | |
logger.addHandler(LogCaptureHandler()) | |
# Streamlit configuration | |
st.set_page_config( | |
page_title="AI Multimodal Titan 🚀", | |
page_icon="🤖", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a Bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "AI Multimodal Titan: PDFs, OCR, Image Gen, Audio/Video Processing, Code Execution, and More! 🌌" | |
} | |
) | |
# Session state initialization | |
for key in ['history', 'builder', 'model_loaded', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'messages']: | |
st.session_state.setdefault(key, [] if key in ['history', 'messages'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else None if key == 'builder' else 0 if key == 'unique_counter' else False) | |
st.session_state.setdefault('selected_model_type', "Causal LM") | |
st.session_state.setdefault('selected_model', "None") | |
st.session_state.setdefault('gallery_size', 2) | |
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty()) | |
class ModelConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
model_type: str = "causal_lm" | |
def model_path(self): | |
return f"models/{self.name}" | |
class DiffusionConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
def model_path(self): | |
return f"diffusion_models/{self.name}" | |
class ModelBuilder: | |
def __init__(self): | |
self.config = None | |
self.model = None | |
self.tokenizer = None | |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): | |
with st.spinner(f"Loading {model_path}... ⏳"): | |
self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
if config: | |
self.config = config | |
self.model.to("cuda" if torch.cuda.is_available() else "cpu") | |
st.success(f"Model loaded! 🎉") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.model.save_pretrained(path) | |
self.tokenizer.save_pretrained(path) | |
st.success(f"Model saved at {path}! ✅") | |
class DiffusionBuilder: | |
def __init__(self): | |
self.config = None | |
self.pipeline = None | |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): | |
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): | |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") | |
if config: | |
self.config = config | |
st.success("Diffusion model loaded! 🎨") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving diffusion model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.pipeline.save_pretrained(path) | |
st.success(f"Diffusion model saved at {path}! ✅") | |
def generate(self, prompt: str): | |
return self.pipeline(prompt, num_inference_steps=20).images[0] | |
def generate_filename(prompt, ext="png"): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
safe_prompt = re.sub(r'[<>:"/\\|?*]', '_', prompt)[:240] | |
return f"{safe_date_time}_{safe_prompt}.{ext}" | |
def get_download_link(file_path, mime_type="application/pdf", label="Download"): | |
with open(file_path, "rb") as f: | |
data = base64.b64encode(f.read()).decode() | |
return f'<a href="data:{mime_type};base64,{data}" download="{os.path.basename(file_path)}">{label}</a>' | |
def zip_directory(directory_path, zip_path): | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(directory_path): | |
for file in files: | |
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) | |
def get_gallery_files(file_types=["png", "pdf", "md", "wav", "mp4"]): | |
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) | |
def download_pdf(url, output_path): | |
try: | |
response = requests.get(url, stream=True, timeout=10) | |
if response.status_code == 200: | |
with open(output_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
return True | |
except requests.RequestException as e: | |
logger.error(f"Failed to download {url}: {e}") | |
return False | |
async def process_pdf_snapshot(pdf_path, mode="single"): | |
start_time = time.time() | |
status = st.empty() | |
status.text(f"Processing PDF Snapshot ({mode})... (0s)") | |
try: | |
doc = fitz.open(pdf_path) | |
output_files = [] | |
if mode == "single": | |
page = doc[0] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
output_file = generate_filename("single", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
elif mode == "double": | |
if len(doc) >= 2: | |
pix1 = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
pix2 = doc[1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples) | |
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples) | |
combined_img = Image.new("RGB", (pix1.width + pix2.width, max(pix1.height, pix2.height))) | |
combined_img.paste(img1, (0, 0)) | |
combined_img.paste(img2, (pix1.width, 0)) | |
output_file = generate_filename("double", "png") | |
combined_img.save(output_file) | |
output_files.append(output_file) | |
elif mode == "allpages": | |
for i in range(len(doc)): | |
page = doc[i] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
output_file = generate_filename(f"page_{i}", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
doc.close() | |
elapsed = int(time.time() - start_time) | |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") | |
return output_files | |
except Exception as e: | |
status.error(f"Failed to process PDF: {str(e)}") | |
return [] | |
async def process_ocr(image, output_file): | |
start_time = time.time() | |
status = st.empty() | |
status.text("Processing GOT-OCR2_0... (0s)") | |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) | |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() | |
temp_file = generate_filename("temp", "png") | |
image.save(temp_file) | |
result = model.chat(tokenizer, temp_file, ocr_type='ocr') | |
os.remove(temp_file) | |
elapsed = int(time.time() - start_time) | |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!") | |
async with aiofiles.open(output_file, "w") as f: | |
await f.write(result) | |
return result | |
async def process_image_gen(prompt, output_file): | |
start_time = time.time() | |
status = st.empty() | |
status.text("Processing Image Gen... (0s)") | |
pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") | |
gen_image = pipeline(prompt, num_inference_steps=20).images[0] | |
elapsed = int(time.time() - start_time) | |
status.text(f"Image Gen completed in {elapsed}s!") | |
gen_image.save(output_file) | |
return gen_image | |
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] | |
try: | |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"Error processing image with GPT: {str(e)}" | |
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"): | |
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] | |
try: | |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"Error processing text with GPT: {str(e)}" | |
def process_audio(audio_input, prompt): | |
with open(audio_input, "rb") as file: | |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file) | |
response = client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": f"{prompt}\n\n{transcription.text}"}]) | |
return transcription.text, response.choices[0].message.content | |
def process_video(video_path, prompt): | |
base64Frames, audio_path = process_video_frames(video_path) | |
with open(video_path, "rb") as file: | |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file) | |
messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}] | |
response = client.chat.completions.create(model="gpt-4o-mini", messages=messages) | |
return response.choices[0].message.content | |
def process_video_frames(video_path, seconds_per_frame=2): | |
base64Frames = [] | |
base_video_path, _ = os.path.splitext(video_path) | |
video = cv2.VideoCapture(video_path) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = video.get(cv2.CAP_PROP_FPS) | |
frames_to_skip = int(fps * seconds_per_frame) | |
curr_frame = 0 | |
while curr_frame < total_frames - 1: | |
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) | |
success, frame = video.read() | |
if not success: | |
break | |
_, buffer = cv2.imencode(".jpg", frame) | |
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | |
curr_frame += frames_to_skip | |
video.release() | |
audio_path = f"{base_video_path}.mp3" | |
try: | |
clip = VideoFileClip(video_path) | |
clip.audio.write_audiofile(audio_path, bitrate="32k") | |
clip.audio.close() | |
clip.close() | |
except: | |
logger.info("No audio track found in video.") | |
return base64Frames, audio_path | |
def execute_code(code): | |
buffer = io.StringIO() | |
try: | |
with redirect_stdout(buffer): | |
exec(code, {}, {}) | |
return buffer.getvalue(), None | |
except Exception as e: | |
return None, str(e) | |
finally: | |
buffer.close() | |
# Sidebar | |
st.sidebar.subheader("Gallery Settings") | |
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") | |
# Tabs | |
tabs = st.tabs(["Camera 📷", "Download 📥", "OCR 🔍", "Build 🌱", "Image Gen 🎨", "PDF 📄", "Image 🖼️", "Audio 🎵", "Video 🎥", "Code 🧑💻", "Gallery 📚"]) | |
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery) = tabs | |
with tab_camera: | |
st.header("Camera Snap 📷") | |
cols = st.columns(2) | |
for i, cam_key in enumerate(["cam0", "cam1"]): | |
with cols[i]: | |
cam_img = st.camera_input(f"Take a picture - Cam {i}", key=cam_key) | |
if cam_img: | |
filename = generate_filename(f"cam{i}") | |
with open(filename, "wb") as f: | |
f.write(cam_img.getvalue()) | |
st.session_state[f'cam{i}_file'] = filename | |
st.session_state['history'].append(f"Snapshot from Cam {i}: {filename}") | |
st.image(Image.open(filename), caption=f"Camera {i}", use_container_width=True) | |
with tab_download: | |
st.header("Download PDFs 📥") | |
url_input = st.text_area("Enter PDF URLs (one per line)", height=200) | |
if st.button("Download 🤖"): | |
urls = url_input.strip().split("\n") | |
progress_bar = st.progress(0) | |
for idx, url in enumerate(urls): | |
if url: | |
output_path = generate_filename(url, "pdf") | |
if download_pdf(url, output_path): | |
st.session_state['downloaded_pdfs'][url] = output_path | |
st.session_state['history'].append(f"Downloaded PDF: {output_path}") | |
st.session_state['asset_checkboxes'][output_path] = True | |
progress_bar.progress((idx + 1) / len(urls)) | |
with tab_ocr: | |
st.header("Test OCR 🔍") | |
all_files = get_gallery_files() | |
if all_files: | |
selected_file = st.selectbox("Select File", all_files, key="ocr_select") | |
if selected_file and st.button("Run OCR 🚀"): | |
if selected_file.endswith('.png'): | |
image = Image.open(selected_file) | |
else: | |
doc = fitz.open(selected_file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
doc.close() | |
output_file = generate_filename("ocr_output", "txt") | |
result = asyncio.run(process_ocr(image, output_file)) | |
st.text_area("OCR Result", result, height=200) | |
st.session_state['history'].append(f"OCR Test: {selected_file} -> {output_file}") | |
with tab_build: | |
st.header("Build Titan 🌱") | |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") | |
base_model = st.selectbox("Select Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]) | |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") | |
if st.button("Download Model ⬇️"): | |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small") | |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() | |
builder.load_model(base_model, config) | |
builder.save_model(config.model_path) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
with tab_imggen: | |
st.header("Test Image Gen 🎨") | |
prompt = st.text_area("Prompt", "Generate a futuristic cityscape") | |
if st.button("Run Image Gen 🚀"): | |
output_file = generate_filename("gen_output", "png") | |
result = asyncio.run(process_image_gen(prompt, output_file)) | |
st.image(result, caption="Generated Image", use_container_width=True) | |
st.session_state['history'].append(f"Image Gen Test: {prompt} -> {output_file}") | |
with tab_pdf: | |
st.header("PDF Process 📄") | |
uploaded_pdfs = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True) | |
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode") | |
if st.button("Process PDFs"): | |
for pdf_file in uploaded_pdfs: | |
pdf_path = generate_filename(pdf_file.name, "pdf") | |
with open(pdf_path, "wb") as f: | |
f.write(pdf_file.read()) | |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, "double" if view_mode == "Double Page" else "single")) | |
for snapshot in snapshots: | |
st.image(Image.open(snapshot), caption=snapshot) | |
text = process_image_with_prompt(Image.open(snapshot), "Extract the electronic text from image") | |
st.text_area(f"Extracted Text from {snapshot}", text) | |
code_prompt = f"Generate Python code based on this text:\n\n{text}" | |
code = process_text_with_prompt(text, code_prompt) | |
st.code(code, language="python") | |
if st.button(f"Execute Code from {snapshot}"): | |
output, error = execute_code(code) | |
if error: | |
st.error(f"Error: {error}") | |
else: | |
st.success(f"Output: {output or 'No output'}") | |
with tab_image: | |
st.header("Image Process 🖼️") | |
uploaded_images = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True) | |
prompt = st.text_input("Prompt", "Extract the electronic text from image") | |
if st.button("Process Images"): | |
for img_file in uploaded_images: | |
img = Image.open(img_file) | |
st.image(img, caption=img_file.name) | |
result = process_image_with_prompt(img, prompt) | |
st.text_area(f"Result for {img_file.name}", result) | |
with tab_audio: | |
st.header("Audio Process 🎵") | |
audio_bytes = audio_recorder() | |
if audio_bytes: | |
filename = generate_filename("recording", "wav") | |
with open(filename, "wb") as f: | |
f.write(audio_bytes) | |
st.audio(filename) | |
transcript, summary = process_audio(filename, "Summarize this audio in markdown") | |
st.text_area("Transcript", transcript) | |
st.markdown(summary) | |
with tab_video: | |
st.header("Video Process 🎥") | |
video_input = st.file_uploader("Upload Video", type=["mp4"]) | |
if video_input: | |
video_path = generate_filename(video_input.name, "mp4") | |
with open(video_path, "wb") as f: | |
f.write(video_input.read()) | |
st.video(video_path) | |
result = process_video(video_path, "Summarize this video in markdown") | |
st.markdown(result) | |
with tab_code: | |
st.header("Code Executor 🧑💻") | |
code_input = st.text_area("Python Code", height=400) | |
if st.button("Run Code"): | |
output, error = execute_code(code_input) | |
if error: | |
st.error(f"Error: {error}") | |
else: | |
st.success(f"Output: {output or 'No output'}") | |
with tab_gallery: | |
st.header("Gallery 📚") | |
all_files = get_gallery_files() | |
for file in all_files: | |
if file.endswith('.png'): | |
st.image(Image.open(file), caption=file) | |
elif file.endswith('.pdf'): | |
doc = fitz.open(file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) | |
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=file) | |
doc.close() | |
elif file.endswith('.md'): | |
with open(file, "r") as f: | |
st.markdown(f.read()) | |
elif file.endswith('.wav'): | |
st.audio(file) | |
elif file.endswith('.mp4'): | |
st.video(file) | |
# Update gallery in sidebar | |
def update_gallery(): | |
container = st.session_state['asset_gallery_container'] | |
container.empty() | |
all_files = get_gallery_files() | |
if all_files: | |
container.markdown("### Asset Gallery 📸📖") | |
cols = container.columns(2) | |
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): | |
with cols[idx % 2]: | |
if file.endswith('.png'): | |
st.image(Image.open(file), caption=os.path.basename(file)) | |
elif file.endswith('.pdf'): | |
doc = fitz.open(file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) | |
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=os.path.basename(file)) | |
doc.close() | |
st.checkbox("Select", key=f"asset_{file}", value=st.session_state['asset_checkboxes'].get(file, False)) | |
st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True) | |
if st.button("Delete", key=f"delete_{file}"): | |
os.remove(file) | |
st.session_state['asset_checkboxes'].pop(file, None) | |
st.experimental_rerun() | |
update_gallery() | |
# Sidebar logs and history | |
st.sidebar.subheader("Action Logs 📜") | |
for record in log_records: | |
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}") | |
st.sidebar.subheader("History 📜") | |
for entry in st.session_state.get("history", []): | |
if entry: | |
st.sidebar.write(entry) |