import gradio as gr import os import json import requests from bs4 import BeautifulSoup import networkx as nx import matplotlib.pyplot as plt import numpy as np import io import base64 from huggingface_hub import InferenceClient import re from urllib.parse import urlparse import warnings # Configure matplotlib for better font handling plt.rcParams['font.family'] = ['DejaVu Sans'] plt.rcParams['font.size'] = 10 plt.rcParams['font.weight'] = 'normal' warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', message='.*Font family.*not found.*') def clean_text_for_display(text): """Clean text to remove characters that might cause font issues.""" if not isinstance(text, str): return str(text) # Remove or replace problematic characters text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters text = re.sub(r'\s+', ' ', text).strip() # Normalize whitespace return text[:50] if len(text) > 50 else text # Limit length for display def fetch_content(url_or_text): """Fetch content from URL or return text directly. Args: url_or_text: Either a URL to fetch content from, or direct text input Returns: Extracted text content """ try: # Check if input looks like a URL parsed = urlparse(url_or_text) if parsed.scheme in ['http', 'https']: try: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } response = requests.get(url_or_text, headers=headers, timeout=10) response.raise_for_status() # Parse HTML and extract text soup = BeautifulSoup(response.content, 'html.parser') # Remove script and style elements for script in soup(["script", "style"]): script.decompose() # Get text and clean it up text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) return text[:5000] # Limit to first 5000 characters except Exception as e: return f"Error fetching URL: {str(e)}" else: # It's direct text input return url_or_text except Exception as e: return f"Error processing input: {str(e)}" def simple_entity_extraction(text): """Fallback entity extraction when AI is not available.""" try: words = text.split() entities = [] # Simple heuristic: words that are capitalized and longer than 2 characters seen = set() for word in words[:30]: # Limit to first 30 words clean_word = re.sub(r'[^\w]', '', word) if (clean_word.istitle() and len(clean_word) > 2 and clean_word.lower() not in seen and clean_word not in ['The', 'This', 'That', 'When', 'Where', 'How']): entities.append({ "name": clean_text_for_display(clean_word), "type": "CONCEPT", "description": "Auto-detected entity" }) seen.add(clean_word.lower()) # Create some basic relationships relationships = [] if len(entities) > 1: for i in range(min(len(entities) - 1, 5)): # Max 5 relationships relationships.append({ "source": entities[i]["name"], "target": entities[i + 1]["name"], "relation": "related_to", "description": "Sequential relationship" }) return {"entities": entities[:10], "relationships": relationships} except Exception as e: return { "entities": [{"name": "Error", "type": "ERROR", "description": str(e)}], "relationships": [] } def extract_entities(text): """Extract entities and relationships using Mistral AI with fallback. Args: text: Input text to analyze Returns: Dictionary containing entities and relationships """ try: # Check if HF_TOKEN is available hf_token = os.environ.get("HF_TOKEN") if not hf_token: print("No HF_TOKEN found, using simple extraction") return simple_entity_extraction(text) client = InferenceClient( provider="together", api_key=hf_token, ) prompt = f""" Analyze the following text and extract: 1. Named entities (people, organizations, locations, concepts) 2. Relationships between these entities Return ONLY a valid JSON object with this structure: {{ "entities": [ {{"name": "entity_name", "type": "PERSON", "description": "brief description"}} ], "relationships": [ {{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}} ] }} Text to analyze: {text[:1500]} """ completion = client.chat.completions.create( model="mistralai/Mistral-Small-24B-Instruct-2501", messages=[{"role": "user", "content": prompt}], max_tokens=1000, temperature=0.1, ) response_text = completion.choices[0].message.content # Clean and extract JSON json_match = re.search(r'\{.*\}', response_text, re.DOTALL) if json_match: json_str = json_match.group() # Clean the JSON string json_str = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', json_str) # Remove control characters parsed_data = json.loads(json_str) # Clean entity names for display if "entities" in parsed_data: for entity in parsed_data["entities"]: if "name" in entity: entity["name"] = clean_text_for_display(entity["name"]) return parsed_data else: print("No valid JSON found in AI response, using fallback") return simple_entity_extraction(text) except Exception as e: print(f"AI extraction failed: {e}, using fallback") return simple_entity_extraction(text) def build_knowledge_graph(entities_data): """Build and visualize knowledge graph. Args: entities_data: Dictionary containing entities and relationships Returns: PIL Image object of the knowledge graph """ try: # Create networkx graph G = nx.Graph() # Add nodes (entities) entities = entities_data.get("entities", []) for entity in entities[:15]: # Limit to 15 entities for better visualization clean_name = clean_text_for_display(entity.get("name", "Unknown")) if clean_name and len(clean_name.strip()) > 0: G.add_node(clean_name, type=entity.get("type", "UNKNOWN"), description=entity.get("description", "")) # Add edges (relationships) relationships = entities_data.get("relationships", []) for rel in relationships: source = clean_text_for_display(rel.get("source", "")) target = clean_text_for_display(rel.get("target", "")) if source in G.nodes and target in G.nodes: G.add_edge(source, target, relation=rel.get("relation", "related"), description=rel.get("description", "")) # If no relationships found, create some connections between entities if len(relationships) == 0 and len(list(G.nodes())) > 1: node_list = list(G.nodes()) for i in range(min(len(node_list) - 1, 5)): G.add_edge(node_list[i], node_list[i + 1], relation="related") # Create visualization fig, ax = plt.subplots(figsize=(10, 8)) # Skip if no nodes if len(G.nodes()) == 0: ax.text(0.5, 0.5, "No entities found to visualize", ha='center', va='center', fontsize=14, transform=ax.transAxes) ax.set_title("Knowledge Graph") ax.axis('off') else: # Position nodes using spring layout pos = nx.spring_layout(G, k=1, iterations=50) # Color nodes by type node_colors = [] type_colors = { "PERSON": "#FF6B6B", "ORG": "#4ECDC4", "LOCATION": "#45B7D1", "CONCEPT": "#96CEB4", "ERROR": "#FF0000", "UNKNOWN": "#DDA0DD" } for node in G.nodes(): node_type = G.nodes[node].get('type', 'UNKNOWN') node_colors.append(type_colors.get(node_type, "#DDA0DD")) # Draw the graph nx.draw(G, pos, node_color=node_colors, node_size=800, font_size=8, font_weight='bold', with_labels=True, edge_color='gray', width=1.5, alpha=0.8, ax=ax) # Add title ax.set_title("Knowledge Graph", size=14, weight='bold') # Convert to PIL Image fig.canvas.draw() # Handle different matplotlib versions try: # Try newer method first img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8) img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,)) # Convert RGBA to RGB img_array = img_array[:, :, :3] except AttributeError: try: # Fallback to older method img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,)) except AttributeError: # Final fallback - save to buffer buf = io.BytesIO() fig.savefig(buf, format='png', bbox_inches='tight') buf.seek(0) from PIL import Image pil_image = Image.open(buf).convert('RGB') plt.close(fig) return pil_image from PIL import Image pil_image = Image.fromarray(img_array) plt.close(fig) return pil_image except Exception as e: # Create simple error image fig, ax = plt.subplots(figsize=(8, 6)) ax.text(0.5, 0.5, f"Error creating graph", ha='center', va='center', fontsize=12, transform=ax.transAxes) ax.set_title("Knowledge Graph Error") ax.axis('off') # Handle different matplotlib versions for error image try: # Try newer method first fig.canvas.draw() img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8) img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,)) img_array = img_array[:, :, :3] # Convert RGBA to RGB except AttributeError: try: # Fallback to older method fig.canvas.draw() img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,)) except AttributeError: # Final fallback - save to buffer buf = io.BytesIO() fig.savefig(buf, format='png', bbox_inches='tight') buf.seek(0) from PIL import Image pil_image = Image.open(buf).convert('RGB') plt.close(fig) return pil_image from PIL import Image pil_image = Image.fromarray(img_array) plt.close(fig) return pil_image def knowledge_graph_builder(url_or_text): """Main function to build knowledge graph from URL or text. Args: url_or_text: URL to analyze or direct text input Returns: Tuple of (entities_json, graph_image, summary) """ try: if not url_or_text or len(url_or_text.strip()) == 0: return "{}", None, "Please provide some text or a URL to analyze." # Step 1: Fetch content content = fetch_content(url_or_text) if content.startswith("Error"): return json.dumps({"error": content}), None, content # Step 2: Extract entities entities_data = extract_entities(content) # Step 3: Build knowledge graph graph_image = build_knowledge_graph(entities_data) # Step 4: Create summary num_entities = len(entities_data.get("entities", [])) num_relationships = len(entities_data.get("relationships", [])) summary = f"""## Knowledge Graph Analysis Complete! πŸ“Š **Statistics:** - Entities found: {num_entities} - Relationships found: {num_relationships} - Content length: {len(content)} characters πŸ” **Extracted Entities:**""" for entity in entities_data.get("entities", [])[:8]: # Show first 8 name = entity.get('name', 'Unknown') entity_type = entity.get('type', 'UNKNOWN') desc = entity.get('description', 'No description') summary += f"\nβ€’ **{name}** ({entity_type}): {desc}" if len(entities_data.get("entities", [])) > 8: summary += f"\n\n... and {len(entities_data.get('entities', [])) - 8} more entities" # Ensure valid JSON output try: json_output = json.dumps(entities_data, indent=2, ensure_ascii=True) except Exception as e: json_output = json.dumps({"error": f"JSON serialization failed: {str(e)}"}) return json_output, graph_image, summary except Exception as e: error_msg = f"Analysis failed: {str(e)}" return json.dumps({"error": error_msg}), None, error_msg # Create Gradio interface with error handling try: demo = gr.Interface( fn=knowledge_graph_builder, inputs=[ gr.Textbox( label="URL or Text Input", placeholder="Enter a URL (https://example.com) or paste text directly...", lines=3, info="Enter a website URL to analyze, or paste text content directly" ) ], outputs=[ gr.JSON(label="Extracted Entities & Relationships"), gr.Image(label="Knowledge Graph Visualization", type="pil"), gr.Markdown(label="Analysis Summary") ], title="🧠 AI Knowledge Graph Builder", description=""" **Transform any text or webpage into an interactive knowledge graph!** This tool: 1. πŸ“– Extracts content from URLs or analyzes your text 2. πŸ€– Uses AI to identify entities and relationships 3. πŸ•ΈοΈ Builds and visualizes knowledge graphs 4. πŸ“Š Provides detailed analysis summaries **Try with:** news articles, Wikipedia pages, or any text content """, theme=gr.themes.Soft(), allow_flagging="never", cache_examples=False # Disable example caching to prevent startup errors ) except Exception as e: print(f"Failed to create Gradio interface: {e}") # Create a simple fallback interface def simple_demo(text): return json.dumps({"error": f"Startup failed: {str(e)}"}), None, "Application failed to start properly." demo = gr.Interface( fn=simple_demo, inputs=[gr.Textbox(label="Input", placeholder="Enter text...")], outputs=[ gr.JSON(label="Error Output"), gr.Image(label="No Image"), gr.Markdown(label="Error Message") ], title="⚠️ Knowledge Graph Builder - Startup Error", allow_flagging="never", cache_examples=False ) # Launch the demo if __name__ == "__main__": try: demo.launch( mcp_server=True, share=False, show_error=True, quiet=False ) except Exception as e: print(f"Launch failed: {e}") # Try without MCP server as fallback try: demo.launch( mcp_server=False, share=False, show_error=True ) except Exception as e2: print(f"Complete failure: {e2}")