Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -42,6 +42,13 @@ def extract_text_from_url(url):
|
|
42 |
def extract_entities_and_relationships(text):
|
43 |
"""Use Mistral to extract entities and relationships from text."""
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
entity_prompt = f"""
|
46 |
Analyze the following text and extract key entities and their relationships.
|
47 |
Return the result as a JSON object with this exact structure:
|
@@ -70,19 +77,44 @@ def extract_entities_and_relationships(text):
|
|
70 |
}
|
71 |
],
|
72 |
max_tokens=2000,
|
73 |
-
temperature=0.3
|
|
|
74 |
)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
response_text = completion.choices[0].message.content.strip()
|
77 |
|
78 |
# Try to parse JSON from the response
|
79 |
# Sometimes the model might return JSON wrapped in markdown code blocks
|
80 |
if response_text.startswith('```'):
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
result = json.loads(response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return result
|
87 |
|
88 |
except json.JSONDecodeError as e:
|
@@ -91,7 +123,7 @@ def extract_entities_and_relationships(text):
|
|
91 |
"entities": [],
|
92 |
"relationships": [],
|
93 |
"error": f"Failed to parse LLM response as JSON: {str(e)}",
|
94 |
-
"raw_response": response_text
|
95 |
}
|
96 |
except Exception as e:
|
97 |
return {
|
@@ -103,66 +135,79 @@ def extract_entities_and_relationships(text):
|
|
103 |
def build_knowledge_graph(input_text):
|
104 |
"""Main function to build knowledge graph from text or URL."""
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
}, indent=2)
|
111 |
-
|
112 |
-
# Check if input is a URL
|
113 |
-
parsed = urlparse(input_text.strip())
|
114 |
-
is_url = parsed.scheme in ('http', 'https') and parsed.netloc
|
115 |
-
|
116 |
-
if is_url:
|
117 |
-
# Extract text from URL
|
118 |
-
extracted_text = extract_text_from_url(input_text.strip())
|
119 |
-
if extracted_text.startswith("Error fetching URL"):
|
120 |
-
return json.dumps({
|
121 |
-
"error": extracted_text,
|
122 |
"knowledge_graph": None
|
123 |
-
}
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
}
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
# Create Gradio interface
|
164 |
demo = gr.Interface(
|
165 |
-
fn=
|
166 |
inputs=gr.Textbox(
|
167 |
label="Text or URL Input",
|
168 |
placeholder="Enter text to analyze or a web URL (e.g., https://example.com)",
|
@@ -190,4 +235,17 @@ demo = gr.Interface(
|
|
190 |
theme=gr.themes.Soft()
|
191 |
)
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
demo.launch(mcp_server=True)
|
|
|
42 |
def extract_entities_and_relationships(text):
|
43 |
"""Use Mistral to extract entities and relationships from text."""
|
44 |
|
45 |
+
if not client.api_key:
|
46 |
+
return {
|
47 |
+
"entities": [],
|
48 |
+
"relationships": [],
|
49 |
+
"error": "HF_TOKEN environment variable not set"
|
50 |
+
}
|
51 |
+
|
52 |
entity_prompt = f"""
|
53 |
Analyze the following text and extract key entities and their relationships.
|
54 |
Return the result as a JSON object with this exact structure:
|
|
|
77 |
}
|
78 |
],
|
79 |
max_tokens=2000,
|
80 |
+
temperature=0.3,
|
81 |
+
timeout=30
|
82 |
)
|
83 |
|
84 |
+
if not completion.choices or not completion.choices[0].message:
|
85 |
+
return {
|
86 |
+
"entities": [],
|
87 |
+
"relationships": [],
|
88 |
+
"error": "Empty response from Mistral API"
|
89 |
+
}
|
90 |
+
|
91 |
response_text = completion.choices[0].message.content.strip()
|
92 |
|
93 |
# Try to parse JSON from the response
|
94 |
# Sometimes the model might return JSON wrapped in markdown code blocks
|
95 |
if response_text.startswith('```'):
|
96 |
+
lines = response_text.split('\n')
|
97 |
+
start_idx = 1
|
98 |
+
if lines[0].strip() == '```json':
|
99 |
+
start_idx = 1
|
100 |
+
end_idx = len(lines) - 1
|
101 |
+
for i in range(len(lines)-1, 0, -1):
|
102 |
+
if lines[i].strip() == '```':
|
103 |
+
end_idx = i
|
104 |
+
break
|
105 |
+
response_text = '\n'.join(lines[start_idx:end_idx])
|
106 |
|
107 |
result = json.loads(response_text)
|
108 |
+
|
109 |
+
# Validate the structure
|
110 |
+
if not isinstance(result, dict):
|
111 |
+
raise ValueError("Response is not a JSON object")
|
112 |
+
|
113 |
+
if "entities" not in result:
|
114 |
+
result["entities"] = []
|
115 |
+
if "relationships" not in result:
|
116 |
+
result["relationships"] = []
|
117 |
+
|
118 |
return result
|
119 |
|
120 |
except json.JSONDecodeError as e:
|
|
|
123 |
"entities": [],
|
124 |
"relationships": [],
|
125 |
"error": f"Failed to parse LLM response as JSON: {str(e)}",
|
126 |
+
"raw_response": response_text if 'response_text' in locals() else "No response"
|
127 |
}
|
128 |
except Exception as e:
|
129 |
return {
|
|
|
135 |
def build_knowledge_graph(input_text):
|
136 |
"""Main function to build knowledge graph from text or URL."""
|
137 |
|
138 |
+
try:
|
139 |
+
if not input_text or not input_text.strip():
|
140 |
+
return {
|
141 |
+
"error": "Please provide text or a valid URL",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
"knowledge_graph": None
|
143 |
+
}
|
144 |
+
|
145 |
+
# Check if input is a URL
|
146 |
+
parsed = urlparse(input_text.strip())
|
147 |
+
is_url = parsed.scheme in ('http', 'https') and parsed.netloc
|
148 |
+
|
149 |
+
if is_url:
|
150 |
+
# Extract text from URL
|
151 |
+
extracted_text = extract_text_from_url(input_text.strip())
|
152 |
+
if extracted_text.startswith("Error fetching URL"):
|
153 |
+
return {
|
154 |
+
"error": extracted_text,
|
155 |
+
"knowledge_graph": None
|
156 |
+
}
|
157 |
+
source_type = "url"
|
158 |
+
source = input_text.strip()
|
159 |
+
content = extracted_text
|
160 |
+
else:
|
161 |
+
# Use provided text directly
|
162 |
+
source_type = "text"
|
163 |
+
source = "direct_input"
|
164 |
+
content = input_text.strip()
|
165 |
+
|
166 |
+
# Extract entities and relationships using Mistral
|
167 |
+
kg_data = extract_entities_and_relationships(content)
|
168 |
+
|
169 |
+
# Build the final knowledge graph structure
|
170 |
+
knowledge_graph = {
|
171 |
+
"source": {
|
172 |
+
"type": source_type,
|
173 |
+
"value": source,
|
174 |
+
"content_preview": content[:200] + "..." if len(content) > 200 else content
|
175 |
+
},
|
176 |
+
"knowledge_graph": {
|
177 |
+
"entities": kg_data.get("entities", []),
|
178 |
+
"relationships": kg_data.get("relationships", []),
|
179 |
+
"entity_count": len(kg_data.get("entities", [])),
|
180 |
+
"relationship_count": len(kg_data.get("relationships", []))
|
181 |
+
},
|
182 |
+
"metadata": {
|
183 |
+
"model": "mistralai/Mistral-Small-24B-Instruct-2501",
|
184 |
+
"content_length": len(content)
|
185 |
+
}
|
186 |
}
|
187 |
+
|
188 |
+
# Add any errors from the extraction process
|
189 |
+
if "error" in kg_data:
|
190 |
+
knowledge_graph["extraction_error"] = kg_data["error"]
|
191 |
+
if "raw_response" in kg_data:
|
192 |
+
knowledge_graph["raw_llm_response"] = kg_data["raw_response"]
|
193 |
+
|
194 |
+
return knowledge_graph
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
return {
|
198 |
+
"error": f"Unexpected error: {str(e)}",
|
199 |
+
"knowledge_graph": None
|
200 |
+
}
|
201 |
+
|
202 |
+
# Create wrapper function for proper JSON formatting in UI
|
203 |
+
def build_knowledge_graph_ui(input_text):
|
204 |
+
"""Wrapper function that returns JSON string for UI display."""
|
205 |
+
result = build_knowledge_graph(input_text)
|
206 |
+
return json.dumps(result, indent=2, ensure_ascii=False)
|
207 |
|
208 |
# Create Gradio interface
|
209 |
demo = gr.Interface(
|
210 |
+
fn=build_knowledge_graph_ui,
|
211 |
inputs=gr.Textbox(
|
212 |
label="Text or URL Input",
|
213 |
placeholder="Enter text to analyze or a web URL (e.g., https://example.com)",
|
|
|
235 |
theme=gr.themes.Soft()
|
236 |
)
|
237 |
|
238 |
+
# Register MCP tools
|
239 |
+
demo.mcp.register_tool(
|
240 |
+
"build_knowledge_graph",
|
241 |
+
build_knowledge_graph,
|
242 |
+
"Build knowledge graph from text or URL",
|
243 |
+
{
|
244 |
+
"input_text": {
|
245 |
+
"type": "string",
|
246 |
+
"description": "Text content or URL to analyze and extract knowledge graph from"
|
247 |
+
}
|
248 |
+
}
|
249 |
+
)
|
250 |
+
|
251 |
demo.launch(mcp_server=True)
|