Spaces:
Running
Running
adjust generation time
Browse files
app.py
CHANGED
@@ -11,8 +11,9 @@ import psutil
|
|
11 |
|
12 |
# Print system resources for debugging
|
13 |
def print_system_resources():
|
14 |
-
cpu_percent = psutil.cpu_percent(interval=1)
|
15 |
memory = psutil.virtual_memory()
|
|
|
|
|
16 |
print(f"CPU usage: {cpu_percent}%")
|
17 |
print(f"Memory usage: {memory.percent}% ({memory.used/1e9:.2f}/{memory.total/1e9:.2f} GB)")
|
18 |
|
@@ -35,6 +36,11 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
35 |
model.to(device)
|
36 |
model.eval()
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
# Print device and memory info for debugging
|
39 |
print(f"Device: {device}")
|
40 |
print(f"Memory allocated: {torch.cuda.memory_allocated(device)/1e9:.2f} GB" if torch.cuda.is_available() else "CPU only")
|
@@ -42,14 +48,14 @@ print_system_resources()
|
|
42 |
|
43 |
def clean_text(text):
|
44 |
"""Clean generated text by removing non-alphabetic characters and extra spaces."""
|
45 |
-
text = re.sub(r'[^\w\s
|
46 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
47 |
return text
|
48 |
|
49 |
-
def generate_text(prompt, max_length=50):
|
50 |
try:
|
51 |
start_time = time.time()
|
52 |
-
print_system_resources()
|
53 |
# Encode input with attention mask
|
54 |
inputs = tokenizer(
|
55 |
prompt,
|
@@ -63,19 +69,19 @@ def generate_text(prompt, max_length=50):
|
|
63 |
outputs = model.generate(
|
64 |
input_ids=inputs["input_ids"],
|
65 |
attention_mask=inputs["attention_mask"],
|
66 |
-
max_new_tokens=
|
67 |
-
min_length=10,
|
68 |
-
do_sample=
|
69 |
-
|
|
|
70 |
no_repeat_ngram_size=2,
|
71 |
-
pad_token_id=tokenizer.pad_token_id
|
72 |
-
early_stopping=True
|
73 |
)
|
74 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
-
print(f"Raw output: {generated_text}")
|
76 |
cleaned_text = clean_text(generated_text)
|
77 |
elapsed_time = time.time() - start_time
|
78 |
-
print_system_resources()
|
79 |
print(f"Generation time: {elapsed_time:.2f} seconds")
|
80 |
return cleaned_text
|
81 |
except Exception as e:
|
@@ -88,9 +94,10 @@ demo = gr.Interface(
|
|
88 |
gr.Textbox(
|
89 |
label="Nhập văn bản đầu vào",
|
90 |
placeholder="Viết gì đó bằng tiếng Việt...",
|
91 |
-
value="Hôm nay là một ngày đẹp trời" #
|
92 |
),
|
93 |
-
gr.Slider(20, 100, value=50, step=10, label="Độ dài tối đa")
|
|
|
94 |
],
|
95 |
outputs="text",
|
96 |
title="Sinh văn bản tiếng Việt",
|
@@ -99,4 +106,4 @@ demo = gr.Interface(
|
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
11 |
|
12 |
# Print system resources for debugging
|
13 |
def print_system_resources():
|
|
|
14 |
memory = psutil.virtual_memory()
|
15 |
+
cpu_percent = psutil.cpu_percent(interval=1)
|
16 |
+
print(f"Total physical memory: {memory.total/1e9:.2f} GB")
|
17 |
print(f"CPU usage: {cpu_percent}%")
|
18 |
print(f"Memory usage: {memory.percent}% ({memory.used/1e9:.2f}/{memory.total/1e9:.2f} GB)")
|
19 |
|
|
|
36 |
model.to(device)
|
37 |
model.eval()
|
38 |
|
39 |
+
# Apply quantization to reduce memory and speed up
|
40 |
+
model = torch.quantization.quantize_dynamic(
|
41 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
42 |
+
)
|
43 |
+
|
44 |
# Print device and memory info for debugging
|
45 |
print(f"Device: {device}")
|
46 |
print(f"Memory allocated: {torch.cuda.memory_allocated(device)/1e9:.2f} GB" if torch.cuda.is_available() else "CPU only")
|
|
|
48 |
|
49 |
def clean_text(text):
|
50 |
"""Clean generated text by removing non-alphabetic characters and extra spaces."""
|
51 |
+
text = re.sub(r'[^\w\s.,!?àáâãèéêìíòóôõùúýăđĩũơưạảấầẩẫậắằẳẵặẹẻẽếềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹ]', '', text)
|
52 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
53 |
return text
|
54 |
|
55 |
+
def generate_text(prompt, max_length=50, temperature=0.9):
|
56 |
try:
|
57 |
start_time = time.time()
|
58 |
+
print_system_resources()
|
59 |
# Encode input with attention mask
|
60 |
inputs = tokenizer(
|
61 |
prompt,
|
|
|
69 |
outputs = model.generate(
|
70 |
input_ids=inputs["input_ids"],
|
71 |
attention_mask=inputs["attention_mask"],
|
72 |
+
max_new_tokens=25, # Slightly increase for more content
|
73 |
+
min_length=10,
|
74 |
+
do_sample=True, # Enable sampling for diversity
|
75 |
+
top_k=50, # Limit to top 50 tokens
|
76 |
+
top_p=0.9, # Nucleus sampling
|
77 |
no_repeat_ngram_size=2,
|
78 |
+
pad_token_id=tokenizer.pad_token_id
|
|
|
79 |
)
|
80 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
print(f"Raw output: {generated_text}")
|
82 |
cleaned_text = clean_text(generated_text)
|
83 |
elapsed_time = time.time() - start_time
|
84 |
+
print_system_resources()
|
85 |
print(f"Generation time: {elapsed_time:.2f} seconds")
|
86 |
return cleaned_text
|
87 |
except Exception as e:
|
|
|
94 |
gr.Textbox(
|
95 |
label="Nhập văn bản đầu vào",
|
96 |
placeholder="Viết gì đó bằng tiếng Việt...",
|
97 |
+
value="Hôm nay là một ngày đẹp trời" # Default text
|
98 |
),
|
99 |
+
gr.Slider(20, 100, value=50, step=10, label="Độ dài tối đa"),
|
100 |
+
gr.Slider(0.7, 1.0, value=0.9, step=0.1, label="Nhiệt độ (Temperature)")
|
101 |
],
|
102 |
outputs="text",
|
103 |
title="Sinh văn bản tiếng Việt",
|
|
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, queue=False)
|