Spaces:
Running
Running
fix request error
Browse files- Dockerfile +1 -0
- app.py +2 -7
Dockerfile
CHANGED
@@ -14,6 +14,7 @@ RUN mkdir -p /app/cache
|
|
14 |
# Set env vars to avoid permission issues and suppress deprecation warnings
|
15 |
ENV HF_HOME=/app/cache \
|
16 |
PYTHONUNBUFFERED=1
|
|
|
17 |
|
18 |
EXPOSE 7860
|
19 |
|
|
|
14 |
# Set env vars to avoid permission issues and suppress deprecation warnings
|
15 |
ENV HF_HOME=/app/cache \
|
16 |
PYTHONUNBUFFERED=1
|
17 |
+
# ENV HF_HOME=/tmp/.cache
|
18 |
|
19 |
EXPOSE 7860
|
20 |
|
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
# Thiết lập biến môi trường HF_HOME
|
3 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
4 |
|
5 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
@@ -7,23 +6,18 @@ import torch
|
|
7 |
import gradio as gr
|
8 |
|
9 |
model_id = "NlpHUST/gpt2-vietnamese"
|
10 |
-
|
11 |
-
# Load model and tokenizer
|
12 |
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
13 |
model = GPT2LMHeadModel.from_pretrained(model_id)
|
14 |
|
15 |
-
# Set to eval mode and use GPU if available
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model.to(device)
|
18 |
model.eval()
|
19 |
|
20 |
-
# Inference function
|
21 |
def generate_text(prompt, max_length=100, temperature=1.0):
|
22 |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
23 |
outputs = model.generate(inputs, max_length=max_length, temperature=temperature, do_sample=True)
|
24 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
|
26 |
-
# Gradio interface
|
27 |
demo = gr.Interface(
|
28 |
fn=generate_text,
|
29 |
inputs=[
|
@@ -37,4 +31,5 @@ demo = gr.Interface(
|
|
37 |
allow_flagging="never"
|
38 |
)
|
39 |
|
40 |
-
|
|
|
|
1 |
import os
|
|
|
2 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
3 |
|
4 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
6 |
import gradio as gr
|
7 |
|
8 |
model_id = "NlpHUST/gpt2-vietnamese"
|
|
|
|
|
9 |
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
10 |
model = GPT2LMHeadModel.from_pretrained(model_id)
|
11 |
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
model.to(device)
|
14 |
model.eval()
|
15 |
|
|
|
16 |
def generate_text(prompt, max_length=100, temperature=1.0):
|
17 |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
18 |
outputs = model.generate(inputs, max_length=max_length, temperature=temperature, do_sample=True)
|
19 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
|
|
|
21 |
demo = gr.Interface(
|
22 |
fn=generate_text,
|
23 |
inputs=[
|
|
|
31 |
allow_flagging="never"
|
32 |
)
|
33 |
|
34 |
+
# Đây là yêu cầu quan trọng với Hugging Face Spaces
|
35 |
+
app = demo
|