Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI, Request | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
# Đặt thư mục cache có quyền ghi | |
os.makedirs("/tmp/hf-cache", exist_ok=True) | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" | |
# Sử dụng model công khai | |
model_name = "VietAI/vit5-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
app = FastAPI() | |
class InputData(BaseModel): | |
input: str | |
async def predict(request: Request, data: InputData): | |
input_ids = tokenizer.encode(data.input, return_tensors="pt", max_length=512, truncation=True) | |
output_ids = model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True) | |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return {"output": output} | |