File size: 889 Bytes
b269ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from flask import Flask, request, jsonify
from transformers import AutoModel, AutoTokenizer
import torch

app = Flask(__name__)

# Load PhoBERT
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
model = AutoModel.from_pretrained("vinai/phobert-base")

@app.route('/embed', methods=['POST'])
def embed():
    data = request.get_json()
    text = data.get('text', '')
    if not text:
        return jsonify({"error": "No text provided"}), 400

    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)

    # Lấy embedding từ hidden state đầu tiên
    embedding = outputs.last_hidden_state[:, 0, :].squeeze().tolist()

    return jsonify({"embedding": embedding})

@app.route('/', methods=['GET'])
def index():
    return "PhoBERT Space is running!"

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)