import dash from dash import dcc, html from dash.dependencies import Input, Output import plotly.graph_objects as go from typing import List, Dict from tqdm import tqdm from functools import lru_cache from src.execution_model import Schedule def convert_schedule_to_visualization_format(schedule: Schedule): """ Converts a Schedule object to the format needed for visualization. Returns: Dict[int, List[Dict]]: Dictionary mapping device_id to a list of operation dictionaries """ # Make sure all operations have start and end times for op in schedule.ops.values(): if op.start_time is None or op.end_time is None: raise ValueError("Operations must have start and end times. Run ScheduleExecutor.execute() first.") visualization_data = {} # Organize operations by device for device_id, device_queue in enumerate(schedule.dev_queues): visualization_data[device_id] = [] for op in device_queue.ops: visualization_data[device_id].append({ "type": op.op_type, "batch": op.batch_id + 1, # +1 because batch_id is 0-indexed "stage": op.stage_id, "start_time": op.start_time, "duration": op.end_time - op.start_time }) return visualization_data # Cache the color calculation as it's repeatedly called with the same parameters @lru_cache(maxsize=128) def get_color(op_type: str, stage_id: int, num_devices: int): # Color palettes for different virtual stages forward_colors = [ "royalblue", # Stage 0 "cornflowerblue", # Stage 1 "dodgerblue", # Stage 2 "steelblue", # Stage 3 "lightskyblue", # Stage 4 "deepskyblue", # Stage 5 "mediumblue", # Stage 6 "mediumslateblue",# Stage 7 "slateblue", # Stage 8 "darkslateblue" # Stage 9 ] # Updated to orange/brown palette for backward operations backward_colors = [ "darkorange", # Stage 0 "orange", # Stage 1 "sandybrown", # Stage 2 "peru", # Stage 3 "chocolate", # Stage 4 "sienna", # Stage 5 "saddlebrown", # Stage 6 "brown", # Stage 7 "darkgoldenrod", # Stage 8 "goldenrod" # Stage 9 ] # Updated to teal/turquoise palette for backward_D operations backward_d_colors = [ "mediumaquamarine", # Stage 8 "cadetblue", # Stage 2 "lightseagreen", # Stage 6 "cyan", # Stage 0 "teal", # Stage 1 "mediumturquoise",# Stage 3 "turquoise", # Stage 4 "aquamarine", # Stage 5 "darkturquoise", # Stage 7 "paleturquoise" # Stage 9 ] # Updated to green palette for backward_W operations backward_w_colors = [ "limegreen", # Stage 2 "forestgreen", # Stage 0 "green", # Stage 1 "seagreen", # Stage 3 "mediumseagreen", # Stage 4 "springgreen", # Stage 5 "mediumspringgreen", # Stage 6 "palegreen", # Stage 7 "lightgreen", # Stage 8 "darkseagreen" # Stage 9 ] virtual_stage = stage_id // num_devices # If virtual_stage is beyond our color list, cycle through the colors color_index = virtual_stage % len(forward_colors) if op_type == "forward": return forward_colors[color_index] elif op_type == "backward": return backward_colors[color_index] elif op_type == "backward_D": return backward_d_colors[color_index] elif op_type == "backward_W": return backward_w_colors[color_index] else: raise ValueError(f"Invalid operation type: {op_type}") def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None, show_progress=True): """ Create a Plotly figure for pipeline parallelism scheduling. Args: schedule_data: Dictionary mapping device IDs to lists of tasks (converted from Schedule) max_time: Optional maximum time to display show_progress: Whether to show a progress bar """ # Find the number of devices num_devices = len(schedule_data) empty_color = "whitesmoke" # Find the maximum time in the schedule if not provided if max_time is None: max_time = 0 for device in schedule_data: for task in schedule_data[device]: end_time = task["start_time"] + task["duration"] if end_time > max_time: max_time = end_time # Create a figure fig = go.Figure() # Initialize progress tracking total_tasks = sum(len(tasks) for tasks in schedule_data.values()) tasks_processed = 0 if show_progress: progress_bar = tqdm(total=total_tasks + num_devices + 3, desc="Creating visualization") # Create a custom y-axis with no gaps between devices y_spacing = 1.0 # Use 1.0 for no gaps # Batch processing for increased performance shapes = [] annotations = [] hover_traces = [] # Add rectangles for each task for device_idx, device in enumerate(schedule_data): device_idx_reversed = num_devices - device_idx - 1 # Sort tasks by start time to ensure correct rendering sorted_tasks = sorted(schedule_data[device], key=lambda t: t["start_time"]) for task in sorted_tasks: # Determine task color and text color if task["type"] == "forward": color = get_color(task["type"], task["stage"], num_devices) text_color = "white" name = "Forward" elif task["type"] == "backward": color = get_color(task["type"], task["stage"], num_devices) text_color = "black" name = "Backward" elif task["type"] == "backward_D": color = get_color(task["type"], task["stage"], num_devices) text_color = "black" name = "Backward (Grad)" elif task["type"] == "backward_W": color = get_color(task["type"], task["stage"], num_devices) text_color = "black" name = "Backward (Weight)" else: color = empty_color text_color = "black" name = "Unknown" # Add rectangle for the task start_time = task["start_time"] duration = task["duration"] # Calculate y positions with no gaps y_pos = device_idx_reversed * y_spacing # Create rectangle using shape (batch-add later) shapes.append(dict( type="rect", x0=start_time, y0=y_pos - 0.5, x1=start_time + duration, y1=y_pos + 0.5, line=dict(color="black", width=0.5), fillcolor=color, layer="above", )) # Add batch number text (batch-add later) annotations.append(dict( x=start_time + duration / 2, y=y_pos, text=f"{task['batch']}", showarrow=False, font=dict(color=text_color, size=12, family="Arial, bold"), )) # Prepare hover data (add traces in batches later) hover_text = f"Batch: {task['batch']}
Stage: {task['stage']}
Type: {name}
Start: {task['start_time']:.2f}
End: {task['start_time'] + task['duration']:.2f}
Duration: {task['duration']:.2f}" hover_traces.append(dict( x=[start_time + duration / 2], y=[y_pos], mode='markers', marker=dict(opacity=0), # Invisible marker hoverinfo='text', text=hover_text, showlegend=False )) # Update progress if show_progress: tasks_processed += 1 progress_bar.update(1) # Add all shapes at once for better performance fig.update_layout(shapes=shapes) # Add all annotations at once fig.update_layout(annotations=annotations) # Add all hover traces at once for trace in hover_traces: fig.add_trace(go.Scatter(**trace)) # Add custom legend legend_items = [] # Find the maximum virtual stage in the data max_virtual_stage = 0 for device in schedule_data: for task in schedule_data[device]: virtual_stage = task["stage"] // num_devices max_virtual_stage = max(max_virtual_stage, virtual_stage) # Add forward and backward items for each virtual stage for vs in range(max_virtual_stage + 1): legend_items.append(dict( name=f"Forward (VS {vs})", color=get_color("forward", vs * num_devices, num_devices) )) legend_items.append(dict( name=f"Backward (VS {vs})", color=get_color("backward", vs * num_devices, num_devices) )) # Add entries for split backward operations if this is a zb1p schedule if any(task["type"] in ["backward_D", "backward_W"] for device in schedule_data for task in schedule_data[device]): legend_items.append(dict( name=f"Backward Grad (VS {vs})", color=get_color("backward_D", vs * num_devices, num_devices) )) legend_items.append(dict( name=f"Backward Weight (VS {vs})", color=get_color("backward_W", vs * num_devices, num_devices) )) # If no tasks found, add default legend items if not legend_items: legend_items = [ dict(name="Forward (VS 0)", color=get_color("forward", 0, num_devices)), dict(name="Backward (VS 0)", color=get_color("backward", 0, num_devices)), dict(name="Backward Grad (VS 0)", color=get_color("backward_D", 0, num_devices)), dict(name="Backward Weight (VS 0)", color=get_color("backward_W", 0, num_devices)), ] for i, item in enumerate(legend_items): fig.add_trace(go.Scatter( x=[None], y=[None], mode='markers', marker=dict(size=10, color=item['color']), name=item['name'], showlegend=True )) if show_progress and i < len(legend_items) - 1: progress_bar.update(1) # Set axis properties device_labels = [f"Device {i}" for i in range(num_devices)] # Modify the ordering to put Device 1 at the top, then Device 0, then the rest if num_devices >= 2: # Move Device 1 to the top, followed by Device 0 device_labels = [device_labels[1], device_labels[0]] + device_labels[2:] if num_devices > 1 else device_labels # Calculate tick positions with no gaps tick_positions = [(num_devices - i - 1) * y_spacing for i in range(num_devices)] # Adjust the range to ensure there are no empty spaces at the end x_end = max_time * 1.05 # Add a small margin title_text = "Pipeline Parallelism Schedule" fig.update_layout( yaxis=dict( tickmode="array", tickvals=tick_positions, ticktext=device_labels, showgrid=False, zeroline=False, ), margin=dict(l=50, r=20, t=40, b=40), plot_bgcolor="white", title=dict( text=title_text, x=0.5, y=0.98, # Move title position closer to the top font=dict(size=20) ), legend=dict( orientation="v", # Changed from horizontal to vertical yanchor="top", y=1.02, # Position at the top xanchor="right", x=1.20, # Position further to the right to accommodate more items title=dict(text="Operation Types:"), itemsizing="constant", tracegroupgap=0 ), width=2000, # Increase width to accommodate the expanded legend height=400, # Maintain current height bargap=0, bargroupgap=0, ) if show_progress: progress_bar.update(1) progress_bar.close() return fig # Cache for storing processed schedule data _schedule_data_cache = {} def create_dash_app(schedule: Schedule, schedule_type="1f1b", enable_caching: bool = True): """ Create a Dash app to visualize the pipeline schedule. Args: schedule: Schedule object to visualize schedule_type: Type of schedule ("1f1b", "zb1p", or custom description) enable_caching: Whether to cache the schedule data and figure """ # Process schedule data only once and cache it global _schedule_data_cache cache_key = id(schedule) if enable_caching and cache_key in _schedule_data_cache: schedule_data = _schedule_data_cache[cache_key] print("Using cached schedule data") else: schedule_data = convert_schedule_to_visualization_format(schedule) if enable_caching: _schedule_data_cache[cache_key] = schedule_data print("Cached schedule data") total_tasks = sum(len(tasks) for tasks in schedule_data.values()) print(f"Total tasks in schedule: {total_tasks}") app = dash.Dash(__name__) app.title = f"Pipeline Parallelism Visualization - {schedule_type}" # Create a more informative layout with data size information app.layout = html.Div([ html.H1(f"Pipeline Parallelism Visualization - {schedule_type}", style={"textAlign": "center"}), html.Div([ html.P(f"Number of devices: {len(schedule_data)}", style={"display": "inline-block", "marginRight": "20px"}), html.P(f"Total tasks: {total_tasks}", style={"display": "inline-block", "marginRight": "20px"}), ], style={"marginBottom": "20px"}), html.Div(id="graph-container", children=[]), dcc.Loading( id="loading-graph", type="circle", children=[ dcc.Graph( id="pipeline-graph", config={'displayModeBar': True, 'toImageButtonOptions': {'format': 'png', 'filename': 'pipeline_visualization'}} ), ] ), ]) # Cache for storing figure to avoid regenerating it figure_cache = {} @app.callback( Output("pipeline-graph", "figure"), Input("graph-container", "children"), prevent_initial_call=False, ) def load_graph(_): # Use cached figure if available cache_key = f"{id(schedule)}" if enable_caching and cache_key in figure_cache: print("Using cached figure") return figure_cache[cache_key] # Create the figure figure = create_pipeline_figure(schedule_data, show_progress=True) # Cache the figure if enable_caching: figure_cache[cache_key] = figure print("Cached figure") return figure return app def visualize_pipeline_parallelism_dash( schedule: Schedule, port: int = 8050, debug: bool = False, enable_caching: bool = True, schedule_type="1f1b" ): """ Launch a Dash app to visualize the pipeline schedule interactively. Args: schedule: Schedule object to visualize port: Port to run the Dash app on debug: Whether to run the Dash app in debug mode enable_caching: Whether to cache schedule data and figures schedule_type: Type of schedule ("1f1b", "zb1p", or custom description) """ app = create_dash_app(schedule, schedule_type=schedule_type, enable_caching=enable_caching) print(f"Starting Dash app on http://localhost:{port}/") app.run_server(debug=debug, port=port)