PP-schedule-visualizer / visualizer.py
Victarry's picture
Change figure style to ZBPP.
8854c6a
raw
history blame
4.9 kB
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Rectangle
from typing import List, Dict, Literal
def visualize_pipeline_parallelism(
schedule: Dict[int, List[Dict]],
schedule_type: Literal["simple", "1f1b"] = "1f1b",
output_file: str = "pipeline_visualization.png",
):
"""
Visualize pipeline parallelism scheduling.
Args:
schedule: Dictionary mapping device IDs to lists of tasks.
Each task is a dictionary with keys:
- 'type': 'forward', 'backward', or 'optimizer'
- 'batch': batch number
- 'start_time': start time of the task
- 'duration': duration of the task
schedule_type: Type of scheduling algorithm used ("simple" or "1f1b")
output_file: Path to save the visualization
"""
# Colors for task types
forward_color = "royalblue"
backward_color = "sandybrown" # Changed to match the reference image
optimizer_color = "#FFEFCF" # Light beige for optimizer steps
empty_color = "whitesmoke" # Very light gray for empty cells
# Find the number of stages (devices)
num_stages = len(schedule)
# Find the maximum time in the schedule
max_time = 0
for device in schedule:
for task in schedule[device]:
end_time = task["start_time"] + task["duration"]
if end_time > max_time:
max_time = end_time
# Create figure and axis
fig, ax = plt.subplots(figsize=(15, 4))
# Create an empty grid with light gray color
for device_idx in range(num_stages):
device_idx_reversed = num_stages - device_idx - 1 # Reverse the device index for plotting
for t in range(int(max_time) + 1):
rect = Rectangle(
(t, device_idx_reversed),
1.0,
1.0,
edgecolor="lightgray",
facecolor=empty_color,
linewidth=0.5,
)
ax.add_patch(rect)
# Plot the schedule
for device_idx, device in enumerate(schedule):
device_idx_reversed = num_stages - device_idx - 1 # Reverse the device index for plotting
for task in schedule[device]:
# Determine task color
if task["type"] == "forward":
color = forward_color
text_color = "white"
elif task["type"] == "backward":
color = backward_color
text_color = "black"
else: # optimizer or any other type
color = optimizer_color
text_color = "black"
rect = Rectangle(
(task["start_time"], device_idx_reversed),
task["duration"],
1.0,
edgecolor="black",
facecolor=color,
linewidth=0.5,
)
ax.add_patch(rect)
# Add text (batch number)
ax.text(
task["start_time"] + task["duration"] / 2,
device_idx_reversed + 0.5,
str(task["batch"]),
ha="center",
va="center",
fontsize=10,
fontweight="bold",
color=text_color,
)
# Set axis limits and labels
ax.set_xlim(0, max_time + 0.5)
ax.set_ylim(-0.5, num_stages + 0.5)
ax.set_yticks(np.arange(num_stages) + 0.5)
# Reverse the order: Device 1 at the top, highest number at the bottom
device_labels = [f"Device {i+1}" for i in range(num_stages)]
device_labels.reverse() # Reverse to put Device 1 at the top
ax.set_yticklabels(device_labels)
# Add "Time" label and arrow at the bottom
arrow_y = -0.4
ax.text(0.5, arrow_y, "Time", ha="right", va="center", fontsize=10)
ax.annotate("", xy=(2, arrow_y), xytext=(1, arrow_y),
arrowprops=dict(arrowstyle="->", lw=1))
# Remove the x-axis ticks
ax.set_xticks([])
# Remove the outer frame/border
for spine in ax.spines.values():
spine.set_visible(False)
# Add a legend - using 3 parts like in the reference image
forward_patch = Rectangle((0, 0), 1, 1, facecolor=forward_color)
backward_patch = Rectangle((0, 0), 1, 1, facecolor=backward_color)
optimizer_patch = Rectangle((0, 0), 1, 1, facecolor=optimizer_color)
legend = ax.legend(
[forward_patch, backward_patch, optimizer_patch],
["Forward", "Backward", "Optimizer step"],
loc="upper center",
bbox_to_anchor=(0.5, -0.15),
ncol=3,
frameon=False,
)
# Turn off grid
ax.grid(False)
# Save the figure
plt.tight_layout()
plt.savefig(output_file, dpi=300, bbox_inches="tight")
plt.close()
print(f"Visualization saved to {output_file}")