Spaces:
Running
Running
import dash | |
from dash import dcc, html | |
from dash.dependencies import Input, Output | |
import plotly.graph_objects as go | |
from typing import List, Dict | |
from tqdm import tqdm | |
from functools import lru_cache | |
from src.execution_model import Schedule | |
def convert_schedule_to_visualization_format(schedule: Schedule): | |
""" | |
Converts a Schedule object to the format needed for visualization. | |
Returns: | |
Dict[int, List[Dict]]: Dictionary mapping device_id to a list of operation dictionaries | |
""" | |
# Make sure all operations have start and end times | |
for op in schedule.ops.values(): | |
if op.start_time is None or op.end_time is None: | |
raise ValueError("Operations must have start and end times. Run ScheduleExecutor.execute() first.") | |
visualization_data = {} | |
# Organize operations by device | |
for device_id, device_queue in enumerate(schedule.dev_queues): | |
visualization_data[device_id] = [] | |
for op in device_queue.ops: | |
visualization_data[device_id].append({ | |
"type": op.op_type, | |
"batch": op.batch_id + 1, # +1 because batch_id is 0-indexed | |
"stage": op.stage_id, | |
"start_time": op.start_time, | |
"duration": op.end_time - op.start_time | |
}) | |
return visualization_data | |
# Cache the color calculation as it's repeatedly called with the same parameters | |
def get_color(op_type: str, stage_id: int, num_devices: int): | |
# Color palettes for different virtual stages | |
forward_colors = [ | |
"royalblue", # Stage 0 | |
"cornflowerblue", # Stage 1 | |
"dodgerblue", # Stage 2 | |
"steelblue", # Stage 3 | |
"lightskyblue", # Stage 4 | |
"deepskyblue", # Stage 5 | |
"mediumblue", # Stage 6 | |
"mediumslateblue",# Stage 7 | |
"slateblue", # Stage 8 | |
"darkslateblue" # Stage 9 | |
] | |
# Updated to orange/brown palette for backward operations | |
backward_colors = [ | |
"darkorange", # Stage 0 | |
"orange", # Stage 1 | |
"sandybrown", # Stage 2 | |
"peru", # Stage 3 | |
"chocolate", # Stage 4 | |
"sienna", # Stage 5 | |
"saddlebrown", # Stage 6 | |
"brown", # Stage 7 | |
"darkgoldenrod", # Stage 8 | |
"goldenrod" # Stage 9 | |
] | |
# Updated to teal/turquoise palette for backward_D operations | |
backward_d_colors = [ | |
"mediumaquamarine", # Stage 8 | |
"cadetblue", # Stage 2 | |
"lightseagreen", # Stage 6 | |
"cyan", # Stage 0 | |
"teal", # Stage 1 | |
"mediumturquoise",# Stage 3 | |
"turquoise", # Stage 4 | |
"aquamarine", # Stage 5 | |
"darkturquoise", # Stage 7 | |
"paleturquoise" # Stage 9 | |
] | |
# Updated to green palette for backward_W operations | |
backward_w_colors = [ | |
"limegreen", # Stage 2 | |
"forestgreen", # Stage 0 | |
"green", # Stage 1 | |
"seagreen", # Stage 3 | |
"mediumseagreen", # Stage 4 | |
"springgreen", # Stage 5 | |
"mediumspringgreen", # Stage 6 | |
"palegreen", # Stage 7 | |
"lightgreen", # Stage 8 | |
"darkseagreen" # Stage 9 | |
] | |
virtual_stage = stage_id // num_devices | |
# If virtual_stage is beyond our color list, cycle through the colors | |
color_index = virtual_stage % len(forward_colors) | |
if op_type == "forward": | |
return forward_colors[color_index] | |
elif op_type == "backward": | |
return backward_colors[color_index] | |
elif op_type == "backward_D": | |
return backward_d_colors[color_index] | |
elif op_type == "backward_W": | |
return backward_w_colors[color_index] | |
else: | |
raise ValueError(f"Invalid operation type: {op_type}") | |
def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None, show_progress=True): | |
""" | |
Create a Plotly figure for pipeline parallelism scheduling. | |
Args: | |
schedule_data: Dictionary mapping device IDs to lists of tasks (converted from Schedule) | |
max_time: Optional maximum time to display | |
show_progress: Whether to show a progress bar | |
""" | |
# Find the number of devices | |
num_devices = len(schedule_data) | |
empty_color = "whitesmoke" | |
# Find the maximum time in the schedule if not provided | |
if max_time is None: | |
max_time = 0 | |
for device in schedule_data: | |
for task in schedule_data[device]: | |
end_time = task["start_time"] + task["duration"] | |
if end_time > max_time: | |
max_time = end_time | |
# Create a figure | |
fig = go.Figure() | |
# Initialize progress tracking | |
total_tasks = sum(len(tasks) for tasks in schedule_data.values()) | |
tasks_processed = 0 | |
if show_progress: | |
progress_bar = tqdm(total=total_tasks + num_devices + 3, desc="Creating visualization") | |
# Create a custom y-axis with no gaps between devices | |
y_spacing = 1.0 # Use 1.0 for no gaps | |
# Batch processing for increased performance | |
shapes = [] | |
annotations = [] | |
hover_traces = [] | |
# Add rectangles for each task | |
for device_idx, device in enumerate(schedule_data): | |
device_idx_reversed = num_devices - device_idx - 1 | |
# Sort tasks by start time to ensure correct rendering | |
sorted_tasks = sorted(schedule_data[device], key=lambda t: t["start_time"]) | |
for task in sorted_tasks: | |
# Determine task color and text color | |
if task["type"] == "forward": | |
color = get_color(task["type"], task["stage"], num_devices) | |
text_color = "white" | |
name = "Forward" | |
elif task["type"] == "backward": | |
color = get_color(task["type"], task["stage"], num_devices) | |
text_color = "black" | |
name = "Backward" | |
elif task["type"] == "backward_D": | |
color = get_color(task["type"], task["stage"], num_devices) | |
text_color = "black" | |
name = "Backward (Grad)" | |
elif task["type"] == "backward_W": | |
color = get_color(task["type"], task["stage"], num_devices) | |
text_color = "black" | |
name = "Backward (Weight)" | |
else: | |
color = empty_color | |
text_color = "black" | |
name = "Unknown" | |
# Add rectangle for the task | |
start_time = task["start_time"] | |
duration = task["duration"] | |
# Calculate y positions with no gaps | |
y_pos = device_idx_reversed * y_spacing | |
# Create rectangle using shape (batch-add later) | |
shapes.append(dict( | |
type="rect", | |
x0=start_time, | |
y0=y_pos - 0.5, | |
x1=start_time + duration, | |
y1=y_pos + 0.5, | |
line=dict(color="black", width=0.5), | |
fillcolor=color, | |
layer="above", | |
)) | |
# Add batch number text (batch-add later) | |
annotations.append(dict( | |
x=start_time + duration / 2, | |
y=y_pos, | |
text=f"{task['batch']}", | |
showarrow=False, | |
font=dict(color=text_color, size=12, family="Arial, bold"), | |
)) | |
# Prepare hover data (add traces in batches later) | |
hover_text = f"Batch: {task['batch']}<br>Stage: {task['stage']}<br>Type: {name}<br>Start: {task['start_time']:.2f}<br>End: {task['start_time'] + task['duration']:.2f}<br>Duration: {task['duration']:.2f}" | |
hover_traces.append(dict( | |
x=[start_time + duration / 2], | |
y=[y_pos], | |
mode='markers', | |
marker=dict(opacity=0), # Invisible marker | |
hoverinfo='text', | |
text=hover_text, | |
showlegend=False | |
)) | |
# Update progress | |
if show_progress: | |
tasks_processed += 1 | |
progress_bar.update(1) | |
# Add all shapes at once for better performance | |
fig.update_layout(shapes=shapes) | |
# Add all annotations at once | |
fig.update_layout(annotations=annotations) | |
# Add all hover traces at once | |
for trace in hover_traces: | |
fig.add_trace(go.Scatter(**trace)) | |
# Add custom legend | |
legend_items = [] | |
# Find the maximum virtual stage in the data | |
max_virtual_stage = 0 | |
for device in schedule_data: | |
for task in schedule_data[device]: | |
virtual_stage = task["stage"] // num_devices | |
max_virtual_stage = max(max_virtual_stage, virtual_stage) | |
# Add forward and backward items for each virtual stage | |
for vs in range(max_virtual_stage + 1): | |
legend_items.append(dict( | |
name=f"Forward (VS {vs})", | |
color=get_color("forward", vs * num_devices, num_devices) | |
)) | |
legend_items.append(dict( | |
name=f"Backward (VS {vs})", | |
color=get_color("backward", vs * num_devices, num_devices) | |
)) | |
# Add entries for split backward operations if this is a zb1p schedule | |
if any(task["type"] in ["backward_D", "backward_W"] for device in schedule_data for task in schedule_data[device]): | |
legend_items.append(dict( | |
name=f"Backward Grad (VS {vs})", | |
color=get_color("backward_D", vs * num_devices, num_devices) | |
)) | |
legend_items.append(dict( | |
name=f"Backward Weight (VS {vs})", | |
color=get_color("backward_W", vs * num_devices, num_devices) | |
)) | |
# If no tasks found, add default legend items | |
if not legend_items: | |
legend_items = [ | |
dict(name="Forward (VS 0)", color=get_color("forward", 0, num_devices)), | |
dict(name="Backward (VS 0)", color=get_color("backward", 0, num_devices)), | |
dict(name="Backward Grad (VS 0)", color=get_color("backward_D", 0, num_devices)), | |
dict(name="Backward Weight (VS 0)", color=get_color("backward_W", 0, num_devices)), | |
] | |
for i, item in enumerate(legend_items): | |
fig.add_trace(go.Scatter( | |
x=[None], | |
y=[None], | |
mode='markers', | |
marker=dict(size=10, color=item['color']), | |
name=item['name'], | |
showlegend=True | |
)) | |
if show_progress and i < len(legend_items) - 1: | |
progress_bar.update(1) | |
# Set axis properties | |
device_labels = [f"Device {i}" for i in range(num_devices)] | |
# Modify the ordering to put Device 1 at the top, then Device 0, then the rest | |
if num_devices >= 2: | |
# Move Device 1 to the top, followed by Device 0 | |
device_labels = [device_labels[1], device_labels[0]] + device_labels[2:] if num_devices > 1 else device_labels | |
# Calculate tick positions with no gaps | |
tick_positions = [(num_devices - i - 1) * y_spacing for i in range(num_devices)] | |
# Adjust the range to ensure there are no empty spaces at the end | |
x_end = max_time * 1.05 # Add a small margin | |
title_text = "Pipeline Parallelism Schedule" | |
fig.update_layout( | |
yaxis=dict( | |
tickmode="array", | |
tickvals=tick_positions, | |
ticktext=device_labels, | |
showgrid=False, | |
zeroline=False, | |
), | |
margin=dict(l=50, r=20, t=40, b=40), | |
plot_bgcolor="white", | |
title=dict( | |
text=title_text, | |
x=0.5, | |
y=0.98, # Move title position closer to the top | |
font=dict(size=20) | |
), | |
legend=dict( | |
orientation="v", # Changed from horizontal to vertical | |
yanchor="top", | |
y=1.02, # Position at the top | |
xanchor="right", | |
x=1.20, # Position further to the right to accommodate more items | |
title=dict(text="<b>Operation Types:</b>"), | |
itemsizing="constant", | |
tracegroupgap=0 | |
), | |
width=2000, # Increase width to accommodate the expanded legend | |
height=400, # Maintain current height | |
bargap=0, | |
bargroupgap=0, | |
) | |
if show_progress: | |
progress_bar.update(1) | |
progress_bar.close() | |
return fig | |
# Cache for storing processed schedule data | |
_schedule_data_cache = {} | |
def create_dash_app(schedule: Schedule, schedule_type="1f1b", enable_caching: bool = True): | |
""" | |
Create a Dash app to visualize the pipeline schedule. | |
Args: | |
schedule: Schedule object to visualize | |
schedule_type: Type of schedule ("1f1b", "zb1p", or custom description) | |
enable_caching: Whether to cache the schedule data and figure | |
""" | |
# Process schedule data only once and cache it | |
global _schedule_data_cache | |
cache_key = id(schedule) | |
if enable_caching and cache_key in _schedule_data_cache: | |
schedule_data = _schedule_data_cache[cache_key] | |
print("Using cached schedule data") | |
else: | |
schedule_data = convert_schedule_to_visualization_format(schedule) | |
if enable_caching: | |
_schedule_data_cache[cache_key] = schedule_data | |
print("Cached schedule data") | |
total_tasks = sum(len(tasks) for tasks in schedule_data.values()) | |
print(f"Total tasks in schedule: {total_tasks}") | |
app = dash.Dash(__name__) | |
app.title = f"Pipeline Parallelism Visualization - {schedule_type}" | |
# Create a more informative layout with data size information | |
app.layout = html.Div([ | |
html.H1(f"Pipeline Parallelism Visualization - {schedule_type}", style={"textAlign": "center"}), | |
html.Div([ | |
html.P(f"Number of devices: {len(schedule_data)}", style={"display": "inline-block", "marginRight": "20px"}), | |
html.P(f"Total tasks: {total_tasks}", style={"display": "inline-block", "marginRight": "20px"}), | |
], style={"marginBottom": "20px"}), | |
html.Div(id="graph-container", children=[]), | |
dcc.Loading( | |
id="loading-graph", | |
type="circle", | |
children=[ | |
dcc.Graph( | |
id="pipeline-graph", | |
config={'displayModeBar': True, 'toImageButtonOptions': {'format': 'png', 'filename': 'pipeline_visualization'}} | |
), | |
] | |
), | |
]) | |
# Cache for storing figure to avoid regenerating it | |
figure_cache = {} | |
def load_graph(_): | |
# Use cached figure if available | |
cache_key = f"{id(schedule)}" | |
if enable_caching and cache_key in figure_cache: | |
print("Using cached figure") | |
return figure_cache[cache_key] | |
# Create the figure | |
figure = create_pipeline_figure(schedule_data, show_progress=True) | |
# Cache the figure | |
if enable_caching: | |
figure_cache[cache_key] = figure | |
print("Cached figure") | |
return figure | |
return app | |
def visualize_pipeline_parallelism_dash( | |
schedule: Schedule, | |
port: int = 8050, | |
debug: bool = False, | |
enable_caching: bool = True, | |
schedule_type="1f1b" | |
): | |
""" | |
Launch a Dash app to visualize the pipeline schedule interactively. | |
Args: | |
schedule: Schedule object to visualize | |
port: Port to run the Dash app on | |
debug: Whether to run the Dash app in debug mode | |
enable_caching: Whether to cache schedule data and figures | |
schedule_type: Type of schedule ("1f1b", "zb1p", or custom description) | |
""" | |
app = create_dash_app(schedule, schedule_type=schedule_type, enable_caching=enable_caching) | |
print(f"Starting Dash app on http://localhost:{port}/") | |
app.run_server(debug=debug, port=port) | |