File size: 14,219 Bytes
a49be3b
86eaa70
a49be3b
 
 
 
 
06107a3
 
a49be3b
 
 
 
 
 
 
86eaa70
06107a3
 
a49be3b
 
 
86eaa70
06107a3
 
a49be3b
86eaa70
06107a3
 
a49be3b
 
 
86eaa70
06107a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86eaa70
06107a3
 
 
 
 
86eaa70
06107a3
 
86eaa70
06107a3
 
 
86eaa70
06107a3
a49be3b
06107a3
 
 
 
 
86eaa70
06107a3
 
 
86eaa70
06107a3
 
 
 
 
 
 
86eaa70
06107a3
 
 
a49be3b
 
 
 
bb52925
 
 
 
 
 
 
 
 
 
 
 
86eaa70
bb52925
 
 
 
 
86eaa70
 
f140d7b
 
 
86eaa70
bb52925
 
 
 
86eaa70
bb52925
 
 
 
 
 
 
d3e7e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49be3b
d3e7e66
 
 
 
 
 
 
 
 
a49be3b
d3e7e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49be3b
 
d3e7e66
 
 
a49be3b
 
 
d3e7e66
a49be3b
 
 
 
 
 
 
d3e7e66
a49be3b
 
 
 
 
d3e7e66
a49be3b
 
 
 
 
 
 
 
 
 
86eaa70
a49be3b
 
 
 
 
 
 
 
 
 
 
86eaa70
a49be3b
 
 
d3e7e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from collections import defaultdict
from src.execution_model import OverlappedOperation, Schedule, ScheduleConfig


def generate_1f1b_schedule(config: ScheduleConfig):
    schedule = Schedule(config)

    assert config.num_devices == config.num_stages, "num_devices must be equal to num_stages for 1F1B"

    for i in range(config.num_devices):
        fwd_batch_id = 0
        bwd_batch_id = 0
        cooldown_batches = warmup_batches = config.num_devices - i - 1
        steady_batches = config.num_batches - warmup_batches

        for _ in range(warmup_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(fwd_batch_id, i, "forward")
            )
            fwd_batch_id += 1

        for _ in range(steady_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(fwd_batch_id, i, "forward")
            )
            fwd_batch_id += 1
            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_batch_id, i, "backward")
            )
            bwd_batch_id += 1

        for _ in range(cooldown_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_batch_id, i, "backward")
            )
            bwd_batch_id += 1

    return schedule


def generate_zero_bubble_1p_schedule(config: ScheduleConfig):
    # Create a new schedule with split_backward=True to support backward_D and backward_W operations
    schedule = Schedule(config)
    total_batches = config.num_batches
    assert config.num_devices == config.num_stages, "num_devices must be equal to num_stages for ZB-1P"

    for i in range(config.num_devices):
        fwd_batch_id = 0
        bwd_d_batch_id = 0
        bwd_w_batch_id = 0

        cooldown_batches = warmup_batches = config.num_devices - i - 1
        steady_batches = total_batches - warmup_batches

        for _ in range(warmup_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(fwd_batch_id, i, "forward")
            )
            fwd_batch_id += 1

        for _ in range(steady_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(fwd_batch_id, i, "forward")
            )
            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_d_batch_id, i, "backward_D")
            )
            if fwd_batch_id - bwd_w_batch_id >= config.num_devices - 1:
                schedule.device_queues[i].add_operation(
                    schedule.get_op(bwd_w_batch_id, i, "backward_W")
                )
                bwd_w_batch_id += 1
            bwd_d_batch_id += 1
            fwd_batch_id += 1
        
        for _ in range(cooldown_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_d_batch_id, i, "backward_D")
            )

            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_w_batch_id, i, "backward_W")
            )

            bwd_w_batch_id += 1
            bwd_d_batch_id += 1
        
        while bwd_w_batch_id < total_batches:
            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_w_batch_id, i, "backward_W")
            )
            bwd_w_batch_id += 1

    return schedule


def generate_1f1b_overlap_schedule(config: ScheduleConfig):
    schedule = Schedule(config)

    assert config.num_devices == config.num_stages, "num_devices must be equal to num_stages for 1F1B"

    for i in range(config.num_devices):
        fwd_batch_id = 0
        bwd_batch_id = 0
        cooldown_batches = warmup_batches = 2 * (config.num_devices - i - 1) + 1
        steady_batches = config.num_batches - warmup_batches

        for _ in range(warmup_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(fwd_batch_id, i, "forward")
            )
            fwd_batch_id += 1

        for _ in range(steady_batches):
            fwd_op = schedule.get_op(fwd_batch_id, i, "forward")
            bwd_op = schedule.get_op(bwd_batch_id, i, "backward")
            overlapped_op = OverlappedOperation([fwd_op, bwd_op])
            schedule.register_overlapped_operation(overlapped_op)
            schedule.device_queues[i].add_operation(overlapped_op)

            fwd_batch_id += 1
            bwd_batch_id += 1

        for _ in range(cooldown_batches):
            schedule.device_queues[i].add_operation(
                schedule.get_op(bwd_batch_id, i, "backward")
            )
            bwd_batch_id += 1

    return schedule


def _get_pp_rank_microbatches(
    num_microbatches, 
    num_devices,
    device_id,
    num_stages_per_device, 
    microbatch_group_size_per_vp_stage, 
):
    """Get the number of total, warmup, and remaining microbatches in PP scheduling."""
    total_num_microbatches = num_microbatches * num_stages_per_device

    if num_devices > 1:
        # Run (num_model_chunks-1)*microbatch_group_size_per_vp_stage on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
        num_warmup_microbatches = (num_devices - device_id - 1) * 2
        num_warmup_microbatches += (num_stages_per_device - 1) * microbatch_group_size_per_vp_stage
    else:
        # forward_backward_no_pipelining
        num_warmup_microbatches = 1

    if num_warmup_microbatches >= total_num_microbatches:
        num_warmup_microbatches = total_num_microbatches

    return num_warmup_microbatches


def _get_schedule_table(num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage):
    """Get the schedule table for PP scheduling.

    Create a tunable schedule lookup table.
    The schedule lookup table uses the virtual_microbatch_id to find the corresponding microbatch_id and model_chunk_id. 
    For example, the tunable schedule table for PP2 N3M5 with VP2 is constructed as below:
    virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
    microbatch_id         | 0 1 2 0 1 2 3 4 3 4
    model_chunk_id        | 0 0 0 1 1 1 0 0 1 1 
    """
    schedule_table = []
    for min_microbatch_id_in_group in range(
        0, num_microbatches, microbatch_group_size_per_vp_stage
    ):
        if min_microbatch_id_in_group + microbatch_group_size_per_vp_stage >= num_microbatches:
            # Construct schedule for the last microbatch group
            schedule_table.extend(
                [
                    (microbatch_id, model_chunk_id)
                    for model_chunk_id in range(num_model_chunks)
                    for microbatch_id in range(min_microbatch_id_in_group, num_microbatches)
                ]
            )
        else:
            # Construct schedule for other microbatch groups
            schedule_table.extend(
                [
                    (microbatch_id, model_chunk_id)
                    for model_chunk_id in range(num_model_chunks)
                    for microbatch_id in range(
                        min_microbatch_id_in_group,
                        min_microbatch_id_in_group + microbatch_group_size_per_vp_stage,
                    )
                ]
            )
    return schedule_table


def _convert_schedule_table_to_order(num_warmup_microbatches, num_model_chunks, schedule_table):
    """Convert a tunable schedule lookup table to the te.make_graphed_callables() accepted
    order format. For example, the tunable schedule table for PP2 N3M5 with VP2 is as below:
    virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
    microbatch_id         | 0 1 2 0 1 2 3 4 3 4
    model_chunk_id        | 0 0 0 1 1 1 0 0 1 1

    Then the forward backward separated order is:
    forward               | 1 1 1 2 2 2 1 1 2 2
    backward              | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1

    If num_warmup_microbatches is 5, the output order is:
    1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
    """
    _, model_chunk_id_table = zip(*schedule_table)
    forward_order = [chunk_id + 1 for chunk_id in model_chunk_id_table]
    backward_order = [chunk_id - num_model_chunks for chunk_id in model_chunk_id_table]
    order = forward_order[:num_warmup_microbatches]
    for i in range(num_warmup_microbatches, len(forward_order)):
        order.append(forward_order[i])
        order.append(backward_order[i - num_warmup_microbatches])
    if num_warmup_microbatches > 0:
        order.extend(backward_order[-num_warmup_microbatches:])
    return order


# Some codes are copied from Megatron-LM
def generate_1f1b_interleave_schedule(config: ScheduleConfig):
    schedule = Schedule(config)
    
    for device_id in range(config.num_devices):
        microbatch_group_size_per_vp_stage = config.num_devices
        num_warmup_microbatches = _get_pp_rank_microbatches(
            config.num_batches,
            config.num_devices,
            device_id,
            config.num_stages_per_device,
            microbatch_group_size_per_vp_stage,
        )

        schedule_table = _get_schedule_table(
            config.num_batches,
            config.num_stages_per_device,
            microbatch_group_size_per_vp_stage,
        )

        order = _convert_schedule_table_to_order(
            num_warmup_microbatches,
            num_model_chunks=config.num_stages_per_device, 
            schedule_table=schedule_table,
        )

        cur_stage_microbatch_id = {}
        for i in range(1, config.num_stages_per_device+1):
            cur_stage_microbatch_id[i] = 0
            cur_stage_microbatch_id[-i] = 0
        for order_item in order:
            stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]

            if order_item > 0:
                op_type = "forward"
                micro_batch_id = cur_stage_microbatch_id[order_item]
                cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
            elif order_item < 0:
                op_type = "backward"
                micro_batch_id = cur_stage_microbatch_id[order_item]
                cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
            else:
                raise ValueError(f"Invalid order item: {order_item}")
            schedule.device_queues[device_id].add_operation(
                schedule.get_op(micro_batch_id, stage_id, op_type)
            )
    return schedule

def generate_1f1b_interleave_overlap_schedule(config: ScheduleConfig):
    schedule = Schedule(config)

    for device_id in range(config.num_devices):
        microbatch_group_size_per_vp_stage = config.num_devices
        num_warmup_microbatches = _get_pp_rank_microbatches(
            config.num_batches,
            config.num_devices,
            device_id,
            config.num_stages_per_device,
            microbatch_group_size_per_vp_stage,
        )

        schedule_table = _get_schedule_table(
            config.num_batches,
            config.num_stages_per_device,
            microbatch_group_size_per_vp_stage,
        )

        # NOTE: Add one more warmup microbatch for overlapped operations!
        num_warmup_microbatches += 1 
        order = _convert_schedule_table_to_order(
            num_warmup_microbatches,
            num_model_chunks=config.num_stages_per_device, 
            schedule_table=schedule_table,
        )

        cur_stage_microbatch_id = {}
        for i in range(1, config.num_stages_per_device+1):
            cur_stage_microbatch_id[i] = 0
            cur_stage_microbatch_id[-i] = 0
        i = 0

        num_overlapped_batches = len(order) - num_warmup_microbatches * 2
        while i < len(order):
            if i < num_warmup_microbatches:
                order_item = order[i]
                assert order_item > 0
                op_type = "forward"
                micro_batch_id = cur_stage_microbatch_id[order_item]
                cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1

                stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
                schedule.device_queues[device_id].add_operation(
                    schedule.get_op(micro_batch_id, stage_id, op_type)
                )
                i += 1
            elif i >= num_warmup_microbatches and i < num_warmup_microbatches + num_overlapped_batches - 1:
                order_item_a = order[i]
                order_item_b = order[i+1]

                op_type_a = "forward" if order_item_a > 0 else "backward"
                micro_batch_id_a = cur_stage_microbatch_id[order_item_a]
                cur_stage_microbatch_id[order_item_a] = cur_stage_microbatch_id[order_item_a] + 1

                op_type_b = "forward" if order_item_b > 0 else "backward"
                micro_batch_id_b = cur_stage_microbatch_id[order_item_b]
                cur_stage_microbatch_id[order_item_b] = cur_stage_microbatch_id[order_item_b] + 1

                stage_id_a = schedule.device_queues[device_id].stages[abs(order_item_a)-1]
                stage_id_b = schedule.device_queues[device_id].stages[abs(order_item_b)-1]

                op_a = schedule.get_op(micro_batch_id_a, stage_id_a, op_type_a)
                op_b = schedule.get_op(micro_batch_id_b, stage_id_b, op_type_b)
                overlapped_op = OverlappedOperation([op_a, op_b])
                schedule.register_overlapped_operation(overlapped_op)
                schedule.device_queues[device_id].add_operation(overlapped_op)

                i += 2
            else:
                assert i >= num_warmup_microbatches + num_overlapped_batches
                order_item = order[i]
                assert order_item < 0
                op_type = "backward"
                micro_batch_id = cur_stage_microbatch_id[order_item]
                cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1

                stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
                schedule.device_queues[device_id].add_operation(
                    schedule.get_op(micro_batch_id, stage_id, op_type)
                )
                i += 1
            

    return schedule