File size: 9,974 Bytes
5126943
912972f
5126943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912972f
 
5126943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912972f
 
 
 
5126943
912972f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5126943
912972f
 
 
5126943
912972f
 
 
5126943
912972f
 
5126943
912972f
 
 
5126943
912972f
 
 
5126943
912972f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5126943
912972f
 
 
5126943
912972f
 
 
 
5126943
 
912972f
 
 
 
 
5126943
912972f
 
 
 
 
 
 
 
 
 
5126943
 
912972f
5126943
 
 
 
 
 
 
 
 
912972f
5126943
 
 
 
912972f
5126943
912972f
5126943
912972f
 
5126943
 
912972f
5126943
912972f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5126943
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import dash
import dash_bootstrap_components as dbc
from dash import dcc, html, Input, Output, State, callback_context
import plotly.graph_objects as go
import webbrowser
from threading import Timer

from src.execution_model import ScheduleConfig, Schedule
from src.strategies import (
    generate_1f1b_schedule,
    generate_zero_bubble_1p_schedule,
    generate_1f1b_overlap_schedule,
    generate_1f1b_interleave_schedule,
    generate_1f1b_interleave_overlap_schedule,
    generate_dualpipe_schedule
)
from src.visualizer import convert_schedule_to_visualization_format, create_pipeline_figure

def open_browser(port):
    webbrowser.open_new(f"http://127.0.0.1:{port}")

STRATEGIES = {
    "1f1b": generate_1f1b_schedule,
    "zb1p": generate_zero_bubble_1p_schedule,
    "1f1b_overlap": generate_1f1b_overlap_schedule,
    "1f1b_interleave": generate_1f1b_interleave_schedule,
    "1f1b_interleave_overlap": generate_1f1b_interleave_overlap_schedule,
    "dualpipe": generate_dualpipe_schedule,
}

app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], suppress_callback_exceptions=True)
app.title = "Pipeline Parallelism Schedule Visualizer"

# Initial default values
default_values = {
    "num_devices": 4,
    "num_stages": 8,
    "num_batches": 16,
    "p2p_latency": 0.1,
    "op_time_forward": 1.0,
    "op_time_backward_d": 1.0,
    "op_time_backward_w": 1.0,
    "op_time_backward": 2.0,
    "strategy": "1f1b_interleave",
    "split_backward": False,
    "placement_strategy": "interleave"
}

# Define input groups using dbc components
basic_params_card = dbc.Card(
    dbc.CardBody([
        html.H5("Basic Parameters", className="card-title"),
        html.Div([
            dbc.Label("Number of Devices (GPUs):"),
            dbc.Input(id='num_devices', type='number', value=default_values["num_devices"], min=1, step=1),
        ], className="mb-3"),
        html.Div([
            dbc.Label("Number of Stages (Model Chunks):"),
            dbc.Input(id='num_stages', type='number', value=default_values["num_stages"], min=1, step=1),
        ], className="mb-3"),
        html.Div([
            dbc.Label("Number of Microbatches:"),
            dbc.Input(id='num_batches', type='number', value=default_values["num_batches"], min=1, step=1),
        ], className="mb-3"),
        html.Div([
            dbc.Label("P2P Latency (ms):"),
            dbc.Input(id='p2p_latency', type='number', value=default_values["p2p_latency"], min=0, step=0.01),
        ], className="mb-3"),
    ])
)

scheduling_params_card = dbc.Card(
    dbc.CardBody([
        html.H5("Scheduling Parameters", className="card-title"),
        html.Div([
            dbc.Label("Scheduling Strategies:"),
            dbc.Checklist(
                id='strategy-checklist',
                options=[{'label': k, 'value': k} for k in STRATEGIES.keys()],
                value=[default_values["strategy"]],
                inline=False,
            ),
        ], className="mb-3"),
    ])
)

timing_params_card = dbc.Card(
    dbc.CardBody([
        html.H5("Operation Timing (ms)", className="card-title"),
        html.Div([
            dbc.Label("Forward:"),
            dbc.Input(id='op_time_forward', type='number', value=default_values["op_time_forward"], min=0.01, step=0.01),
        ], className="mb-3"),
        html.Div([
            dbc.Label("Backward (Combined):"),
            dbc.Input(id='op_time_backward', type='number', value=default_values["op_time_backward"], min=0.01, step=0.01),
            dbc.FormText("Used when strategy does NOT require split backward."),
        ], className="mb-3"),
        html.Div([
            dbc.Label("Backward D (Data Grad):"),
            dbc.Input(id='op_time_backward_d', type='number', value=default_values["op_time_backward_d"], min=0.01, step=0.01),
            dbc.FormText("Used when strategy requires split backward (e.g., ZB-1P, DualPipe)."),
        ], className="mb-3"),
        html.Div([
            dbc.Label("Backward W (Weight Grad):"),
            dbc.Input(id='op_time_backward_w', type='number', value=default_values["op_time_backward_w"], min=0.01, step=0.01),
            dbc.FormText("Used when strategy requires split backward (e.g., ZB-1P, DualPipe)."),
        ], className="mb-3"),
    ])
)

# Updated app layout using dbc components and structure
app.layout = dbc.Container([
    html.H1("Pipeline Parallelism Schedule Visualizer", className="my-4 text-center"),

    dbc.Row([
        dbc.Col(basic_params_card, md=4),
        dbc.Col(scheduling_params_card, md=4),
        dbc.Col(timing_params_card, md=4),
    ]),

    dbc.Row([
        dbc.Col([
            dbc.Button('Generate Schedule', id='generate-button', n_clicks=0, color="primary", className="mt-4"),
        ], className="text-center")
    ]),

    dbc.Row([
        dbc.Col([
            dcc.Loading(
                id="loading-graph-area",
                type="circle",
                children=html.Div(id='graph-output-container', className="mt-4")
            )
        ])
    ])
], fluid=True)

@app.callback(
    Output('graph-output-container', 'children'),
    Input('generate-button', 'n_clicks'),
    State('num_devices', 'value'),
    State('num_stages', 'value'),
    State('num_batches', 'value'),
    State('p2p_latency', 'value'),
    State('op_time_forward', 'value'),
    State('op_time_backward', 'value'),
    State('op_time_backward_d', 'value'),
    State('op_time_backward_w', 'value'),
    State('strategy-checklist', 'value'),
    prevent_initial_call=True
)
def update_graph(n_clicks, num_devices, num_stages, num_batches, p2p_latency,
                 op_time_forward, op_time_backward, op_time_backward_d, op_time_backward_w,
                 selected_strategies):

    output_components = []

    if not selected_strategies:
        return [dbc.Alert("Please select at least one scheduling strategy.", color="warning")]

    if not all([num_devices, num_stages, num_batches, op_time_forward]):
         return [dbc.Alert("Missing required basic input values (Devices, Stages, Batches, Forward Time).", color="danger")]

    for strategy in selected_strategies:
        error_message = ""
        fig = go.Figure()
        placement_strategy = ""

        split_backward = strategy in ["zb1p", "dualpipe"]

        if split_backward and not all([op_time_backward_d, op_time_backward_w]):
            error_message = f"Strategy '{strategy}': Backward D and Backward W times are required."
        elif not split_backward and not op_time_backward:
            error_message = f"Strategy '{strategy}': Combined Backward time is required."

        if not error_message:
            if strategy in ["1f1b", "1f1b_overlap", "zb1p"]:
                placement_strategy = "standard"
                if num_devices != num_stages:
                    error_message = f"Strategy '{strategy}': Requires Number of Stages == Number of Devices."
            elif strategy in ["1f1b_interleave", "1f1b_interleave_overlap"]:
                placement_strategy = "interleave"
                if num_stages % num_devices != 0:
                    error_message = f"Strategy '{strategy}': Requires Number of Stages to be divisible by Number of Devices."
            elif strategy == "dualpipe":
                placement_strategy = "dualpipe"
                if num_stages % 2 != 0:
                    error_message = f"Strategy '{strategy}' (DualPipe): Requires an even number of stages."
                elif num_stages != num_devices:
                    error_message = f"Strategy '{strategy}' (DualPipe): Requires Number of Stages == Number of Devices."

        if not error_message:
            try:
                op_times = { "forward": float(op_time_forward) }
                if split_backward:
                    op_times["backward_D"] = float(op_time_backward_d)
                    op_times["backward_W"] = float(op_time_backward_w)
                    op_times["backward"] = float(op_time_backward_d) + float(op_time_backward_w)
                else:
                    op_times["backward"] = float(op_time_backward)

                config = ScheduleConfig(
                    num_devices=int(num_devices),
                    num_stages=int(num_stages),
                    num_batches=int(num_batches),
                    p2p_latency=float(p2p_latency),
                    placement_strategy=placement_strategy,
                    split_backward=split_backward,
                    op_times=op_times,
                )

                schedule_func = STRATEGIES.get(strategy)
                if not schedule_func:
                     raise ValueError(f"Invalid strategy function for: {strategy}")

                schedule = schedule_func(config)
                schedule.execute()

                vis_data = convert_schedule_to_visualization_format(schedule)
                fig = create_pipeline_figure(vis_data, show_progress=False)

                output_components.append(html.Div([
                    html.H4(f"Schedule: {strategy}", className="text-center mt-3 mb-2"),
                    dcc.Graph(figure=fig)
                ]))

            except (AssertionError, ValueError, TypeError) as e:
                 error_message = f"Error generating schedule for '{strategy}': {e}"
                 import traceback
                 traceback.print_exc()
            except Exception as e:
                 error_message = f"An unexpected error occurred for '{strategy}': {e}"
                 import traceback
                 traceback.print_exc()

        if error_message:
             output_components.append(
                 dbc.Alert(error_message, color="danger", className="mt-3")
             )

    return output_components

if __name__ == '__main__':
    port = 8050
    # Timer(1, open_browser, args=(port,)).start() # Optional: automatically open browser
    print(f"Dash server running on http://127.0.0.1:{port}")
    app.run_server(debug=True, port=port)