Spaces:
Running
Running
File size: 9,974 Bytes
5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 912972f 5126943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import dash
import dash_bootstrap_components as dbc
from dash import dcc, html, Input, Output, State, callback_context
import plotly.graph_objects as go
import webbrowser
from threading import Timer
from src.execution_model import ScheduleConfig, Schedule
from src.strategies import (
generate_1f1b_schedule,
generate_zero_bubble_1p_schedule,
generate_1f1b_overlap_schedule,
generate_1f1b_interleave_schedule,
generate_1f1b_interleave_overlap_schedule,
generate_dualpipe_schedule
)
from src.visualizer import convert_schedule_to_visualization_format, create_pipeline_figure
def open_browser(port):
webbrowser.open_new(f"http://127.0.0.1:{port}")
STRATEGIES = {
"1f1b": generate_1f1b_schedule,
"zb1p": generate_zero_bubble_1p_schedule,
"1f1b_overlap": generate_1f1b_overlap_schedule,
"1f1b_interleave": generate_1f1b_interleave_schedule,
"1f1b_interleave_overlap": generate_1f1b_interleave_overlap_schedule,
"dualpipe": generate_dualpipe_schedule,
}
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], suppress_callback_exceptions=True)
app.title = "Pipeline Parallelism Schedule Visualizer"
# Initial default values
default_values = {
"num_devices": 4,
"num_stages": 8,
"num_batches": 16,
"p2p_latency": 0.1,
"op_time_forward": 1.0,
"op_time_backward_d": 1.0,
"op_time_backward_w": 1.0,
"op_time_backward": 2.0,
"strategy": "1f1b_interleave",
"split_backward": False,
"placement_strategy": "interleave"
}
# Define input groups using dbc components
basic_params_card = dbc.Card(
dbc.CardBody([
html.H5("Basic Parameters", className="card-title"),
html.Div([
dbc.Label("Number of Devices (GPUs):"),
dbc.Input(id='num_devices', type='number', value=default_values["num_devices"], min=1, step=1),
], className="mb-3"),
html.Div([
dbc.Label("Number of Stages (Model Chunks):"),
dbc.Input(id='num_stages', type='number', value=default_values["num_stages"], min=1, step=1),
], className="mb-3"),
html.Div([
dbc.Label("Number of Microbatches:"),
dbc.Input(id='num_batches', type='number', value=default_values["num_batches"], min=1, step=1),
], className="mb-3"),
html.Div([
dbc.Label("P2P Latency (ms):"),
dbc.Input(id='p2p_latency', type='number', value=default_values["p2p_latency"], min=0, step=0.01),
], className="mb-3"),
])
)
scheduling_params_card = dbc.Card(
dbc.CardBody([
html.H5("Scheduling Parameters", className="card-title"),
html.Div([
dbc.Label("Scheduling Strategies:"),
dbc.Checklist(
id='strategy-checklist',
options=[{'label': k, 'value': k} for k in STRATEGIES.keys()],
value=[default_values["strategy"]],
inline=False,
),
], className="mb-3"),
])
)
timing_params_card = dbc.Card(
dbc.CardBody([
html.H5("Operation Timing (ms)", className="card-title"),
html.Div([
dbc.Label("Forward:"),
dbc.Input(id='op_time_forward', type='number', value=default_values["op_time_forward"], min=0.01, step=0.01),
], className="mb-3"),
html.Div([
dbc.Label("Backward (Combined):"),
dbc.Input(id='op_time_backward', type='number', value=default_values["op_time_backward"], min=0.01, step=0.01),
dbc.FormText("Used when strategy does NOT require split backward."),
], className="mb-3"),
html.Div([
dbc.Label("Backward D (Data Grad):"),
dbc.Input(id='op_time_backward_d', type='number', value=default_values["op_time_backward_d"], min=0.01, step=0.01),
dbc.FormText("Used when strategy requires split backward (e.g., ZB-1P, DualPipe)."),
], className="mb-3"),
html.Div([
dbc.Label("Backward W (Weight Grad):"),
dbc.Input(id='op_time_backward_w', type='number', value=default_values["op_time_backward_w"], min=0.01, step=0.01),
dbc.FormText("Used when strategy requires split backward (e.g., ZB-1P, DualPipe)."),
], className="mb-3"),
])
)
# Updated app layout using dbc components and structure
app.layout = dbc.Container([
html.H1("Pipeline Parallelism Schedule Visualizer", className="my-4 text-center"),
dbc.Row([
dbc.Col(basic_params_card, md=4),
dbc.Col(scheduling_params_card, md=4),
dbc.Col(timing_params_card, md=4),
]),
dbc.Row([
dbc.Col([
dbc.Button('Generate Schedule', id='generate-button', n_clicks=0, color="primary", className="mt-4"),
], className="text-center")
]),
dbc.Row([
dbc.Col([
dcc.Loading(
id="loading-graph-area",
type="circle",
children=html.Div(id='graph-output-container', className="mt-4")
)
])
])
], fluid=True)
@app.callback(
Output('graph-output-container', 'children'),
Input('generate-button', 'n_clicks'),
State('num_devices', 'value'),
State('num_stages', 'value'),
State('num_batches', 'value'),
State('p2p_latency', 'value'),
State('op_time_forward', 'value'),
State('op_time_backward', 'value'),
State('op_time_backward_d', 'value'),
State('op_time_backward_w', 'value'),
State('strategy-checklist', 'value'),
prevent_initial_call=True
)
def update_graph(n_clicks, num_devices, num_stages, num_batches, p2p_latency,
op_time_forward, op_time_backward, op_time_backward_d, op_time_backward_w,
selected_strategies):
output_components = []
if not selected_strategies:
return [dbc.Alert("Please select at least one scheduling strategy.", color="warning")]
if not all([num_devices, num_stages, num_batches, op_time_forward]):
return [dbc.Alert("Missing required basic input values (Devices, Stages, Batches, Forward Time).", color="danger")]
for strategy in selected_strategies:
error_message = ""
fig = go.Figure()
placement_strategy = ""
split_backward = strategy in ["zb1p", "dualpipe"]
if split_backward and not all([op_time_backward_d, op_time_backward_w]):
error_message = f"Strategy '{strategy}': Backward D and Backward W times are required."
elif not split_backward and not op_time_backward:
error_message = f"Strategy '{strategy}': Combined Backward time is required."
if not error_message:
if strategy in ["1f1b", "1f1b_overlap", "zb1p"]:
placement_strategy = "standard"
if num_devices != num_stages:
error_message = f"Strategy '{strategy}': Requires Number of Stages == Number of Devices."
elif strategy in ["1f1b_interleave", "1f1b_interleave_overlap"]:
placement_strategy = "interleave"
if num_stages % num_devices != 0:
error_message = f"Strategy '{strategy}': Requires Number of Stages to be divisible by Number of Devices."
elif strategy == "dualpipe":
placement_strategy = "dualpipe"
if num_stages % 2 != 0:
error_message = f"Strategy '{strategy}' (DualPipe): Requires an even number of stages."
elif num_stages != num_devices:
error_message = f"Strategy '{strategy}' (DualPipe): Requires Number of Stages == Number of Devices."
if not error_message:
try:
op_times = { "forward": float(op_time_forward) }
if split_backward:
op_times["backward_D"] = float(op_time_backward_d)
op_times["backward_W"] = float(op_time_backward_w)
op_times["backward"] = float(op_time_backward_d) + float(op_time_backward_w)
else:
op_times["backward"] = float(op_time_backward)
config = ScheduleConfig(
num_devices=int(num_devices),
num_stages=int(num_stages),
num_batches=int(num_batches),
p2p_latency=float(p2p_latency),
placement_strategy=placement_strategy,
split_backward=split_backward,
op_times=op_times,
)
schedule_func = STRATEGIES.get(strategy)
if not schedule_func:
raise ValueError(f"Invalid strategy function for: {strategy}")
schedule = schedule_func(config)
schedule.execute()
vis_data = convert_schedule_to_visualization_format(schedule)
fig = create_pipeline_figure(vis_data, show_progress=False)
output_components.append(html.Div([
html.H4(f"Schedule: {strategy}", className="text-center mt-3 mb-2"),
dcc.Graph(figure=fig)
]))
except (AssertionError, ValueError, TypeError) as e:
error_message = f"Error generating schedule for '{strategy}': {e}"
import traceback
traceback.print_exc()
except Exception as e:
error_message = f"An unexpected error occurred for '{strategy}': {e}"
import traceback
traceback.print_exc()
if error_message:
output_components.append(
dbc.Alert(error_message, color="danger", className="mt-3")
)
return output_components
if __name__ == '__main__':
port = 8050
# Timer(1, open_browser, args=(port,)).start() # Optional: automatically open browser
print(f"Dash server running on http://127.0.0.1:{port}")
app.run_server(debug=True, port=port) |