Spaces:
Running
Running
File size: 12,970 Bytes
a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b 16ed969 a49be3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objects as go
import argparse
from typing import List, Dict, Literal, Optional
from tqdm import tqdm
import base64
from src.execution_model import Schedule
def convert_schedule_to_visualization_format(schedule: Schedule):
"""
Converts a Schedule object to the format needed for visualization.
Returns:
Dict[int, List[Dict]]: Dictionary mapping device_id to a list of operation dictionaries
"""
# Make sure all operations have start and end times
for op in schedule.ops.values():
if op.start_time is None or op.end_time is None:
raise ValueError("Operations must have start and end times. Run ScheduleExecutor.execute() first.")
visualization_data = {}
# Organize operations by device
for device_id, device_queue in enumerate(schedule.dev_queues):
visualization_data[device_id] = []
for op in device_queue.ops:
visualization_data[device_id].append({
"type": op.op_type,
"batch": op.batch_id + 1, # +1 because batch_id is 0-indexed
"stage": op.stage_id,
"start_time": op.start_time,
"duration": op.end_time - op.start_time
})
return visualization_data
def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None, show_progress=True):
"""
Create a Plotly figure for pipeline parallelism scheduling.
Args:
schedule_data: Dictionary mapping device IDs to lists of tasks (converted from Schedule)
max_time: Optional maximum time to display
show_progress: Whether to show a progress bar
"""
# Find the number of devices
num_devices = len(schedule_data)
empty_color = "whitesmoke"
# Colors for task types
def get_color(op_type: str, stage_id: int):
# Color palettes for different virtual stages
forward_colors = [
"royalblue", # Stage 0
"lightskyblue", # Stage 1
"cornflowerblue", # Stage 2
"steelblue", # Stage 3
"dodgerblue", # Stage 4
"deepskyblue", # Stage 5
"mediumblue", # Stage 6
"mediumslateblue",# Stage 7
"slateblue", # Stage 8
"darkslateblue" # Stage 9
]
backward_colors = [
"lightgreen", # Stage 0
"mediumseagreen", # Stage 1
"seagreen", # Stage 2
"lightseagreen", # Stage 3
"mediumaquamarine", # Stage 4
"mediumspringgreen", # Stage 5
"springgreen", # Stage 6
"palegreen", # Stage 7
"limegreen", # Stage 8
"forestgreen" # Stage 9
]
virtual_stage = stage_id // num_devices
# If virtual_stage is beyond our color list, cycle through the colors
color_index = virtual_stage % len(forward_colors)
if op_type == "forward":
return forward_colors[color_index]
elif op_type == "backward":
return backward_colors[color_index]
else:
raise ValueError(f"Invalid operation type: {op_type}")
# Find the maximum time in the schedule if not provided
if max_time is None:
max_time = 0
for device in schedule_data:
for task in schedule_data[device]:
end_time = task["start_time"] + task["duration"]
if end_time > max_time:
max_time = end_time
# Create a figure
fig = go.Figure()
# Initialize progress tracking
total_tasks = sum(len(tasks) for tasks in schedule_data.values())
tasks_processed = 0
if show_progress:
progress_bar = tqdm(total=total_tasks + num_devices + 3, desc="Creating visualization")
# Create a custom y-axis with no gaps between devices
y_spacing = 1.0 # Use 1.0 for no gaps
# Add rectangles for each task
for device_idx, device in enumerate(schedule_data):
device_idx_reversed = num_devices - device_idx - 1
# Sort tasks by start time to ensure correct rendering
sorted_tasks = sorted(schedule_data[device], key=lambda t: t["start_time"])
for task in sorted_tasks:
# Determine task color and text color
if task["type"] == "forward":
color = get_color(task["type"], task["stage"])
text_color = "white"
name = "Forward"
elif task["type"] == "backward":
color = get_color(task["type"], task["stage"])
text_color = "black"
name = "Backward"
else:
color = empty_color
text_color = "black"
name = "Unknown"
# Add rectangle for the task
start_time = task["start_time"]
duration = task["duration"]
# Calculate y positions with no gaps
y_pos = device_idx_reversed * y_spacing
# Create rectangle using shape
fig.add_shape(
type="rect",
x0=start_time,
y0=y_pos - 0.5,
x1=start_time + duration,
y1=y_pos + 0.5,
line=dict(color="black", width=0.5),
fillcolor=color,
layer="above",
)
# Add batch number text
fig.add_annotation(
x=start_time + duration / 2,
y=y_pos,
text=f"{task['batch']}", # Only show batch ID
showarrow=False,
font=dict(color=text_color, size=12, family="Arial, bold"), # Increased font size
)
# Add hover data with additional details
fig.add_trace(go.Scatter(
x=[start_time + duration / 2],
y=[y_pos],
mode='markers',
marker=dict(opacity=0), # Invisible marker
hoverinfo='text',
text=f"Batch: {task['batch']}<br>Stage: {task['stage']}<br>Type: {name}<br>Start: {task['start_time']:.2f}<br>End: {task['start_time'] + task['duration']:.2f}<br>Duration: {task['duration']:.2f}",
showlegend=False
))
# Update progress
if show_progress:
tasks_processed += 1
progress_bar.update(1)
# Add custom legend
legend_items = []
# Find the maximum virtual stage in the data
max_virtual_stage = 0
for device in schedule_data:
for task in schedule_data[device]:
virtual_stage = task["stage"] // num_devices
max_virtual_stage = max(max_virtual_stage, virtual_stage)
# Add forward and backward items for each virtual stage
for vs in range(max_virtual_stage + 1):
legend_items.append(dict(
name=f"Forward (VS {vs})",
color=get_color("forward", vs * num_devices)
))
legend_items.append(dict(
name=f"Backward (VS {vs})",
color=get_color("backward", vs * num_devices)
))
# If no tasks found, add default legend items
if not legend_items:
legend_items = [
dict(name="Forward (VS 0)", color=get_color("forward", 0)),
dict(name="Backward (VS 0)", color=get_color("backward", 0)),
]
for i, item in enumerate(legend_items):
fig.add_trace(go.Scatter(
x=[None],
y=[None],
mode='markers',
marker=dict(size=10, color=item['color']),
name=item['name'],
showlegend=True
))
if show_progress and i < len(legend_items) - 1:
progress_bar.update(1)
# Set axis properties
device_labels = [f"Device {i}" for i in range(num_devices)]
device_labels.reverse() # Reverse to put Device 0 at the top
# Calculate tick positions with no gaps
tick_positions = [(num_devices - i - 1) * y_spacing for i in range(num_devices)]
# Adjust the range to ensure there are no empty spaces at the end
x_end = max_time * 1.05 # Add a small margin
fig.update_layout(
yaxis=dict(
tickmode="array",
tickvals=tick_positions,
ticktext=device_labels,
showgrid=False,
zeroline=False,
),
margin=dict(l=50, r=20, t=40, b=40),
plot_bgcolor="white",
title=dict(
text="Pipeline Parallelism Schedule",
x=0.5,
y=0.98, # Move title position closer to the top
font=dict(size=20)
),
legend=dict(
orientation="v", # Changed from horizontal to vertical
yanchor="top",
y=1.02, # Position at the top
xanchor="right",
x=1.15, # Position to the right of the plot
title=dict(text="<b>Operation Types:</b>"),
itemsizing="constant",
tracegroupgap=0
),
width=1800, # Increase width to accommodate the legend
height=400, # Maintain current height
bargap=0,
bargroupgap=0,
)
if show_progress:
progress_bar.update(1)
progress_bar.close()
return fig
def create_dash_app(schedule: Schedule, schedule_type="1f1b"):
"""
Create a Dash app to visualize the pipeline schedule.
Args:
schedule: Schedule object to visualize
schedule_type: Type of schedule ("1f1b" or other)
"""
# Convert schedule to visualization format
schedule_data = convert_schedule_to_visualization_format(schedule)
# Create the app
app = dash.Dash(__name__, title=f"Pipeline Parallelism Visualizer - {schedule_type}")
app.layout = html.Div([
html.H1(f"Pipeline Parallelism Visualizer - {schedule_type}", style={'textAlign': 'center'}),
html.Div([
html.Div([
html.H3("Schedule Configuration:"),
html.Ul([
html.Li(f"Number of devices: {schedule.config.num_devices}"),
html.Li(f"Number of stages: {schedule.config.num_stages}"),
html.Li(f"Number of batches: {schedule.config.num_batches}"),
]),
], className="config-section"),
html.Button("Download Image", id="btn-download",
style={
'marginTop': '20px',
'padding': '10px',
'backgroundColor': '#007BFF',
'color': 'white',
'border': 'none',
'borderRadius': '5px',
'cursor': 'pointer'
}),
dcc.Download(id="download-image"),
], style={'margin': '20px'}),
html.Div(id="graph-container", children=[]),
dcc.Graph(
id="pipeline-graph",
config={'displayModeBar': True, 'toImageButtonOptions': {'format': 'png', 'filename': 'pipeline_visualization'}}
),
])
@app.callback(
Output("pipeline-graph", "figure"),
Input("graph-container", "children"),
prevent_initial_call=False,
)
def load_graph(_):
# Create the figure when the app loads
return create_pipeline_figure(schedule_data, show_progress=True)
@app.callback(
Output("download-image", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True,
)
def download_image(n_clicks):
# Generate the figure for download
fig = create_pipeline_figure(schedule_data, show_progress=True)
# Convert to base64 image
img_bytes = fig.to_image(format="png", width=1600, height=1000, scale=2)
img_base64 = base64.b64encode(img_bytes).decode('ascii')
# Return the download data
return dict(
content=img_base64,
filename=f"pipeline_visualization_{schedule_type}.png",
type="image/png",
base64=True
)
return app
def visualize_pipeline_parallelism_dash(
schedule: Schedule,
port: int = 8050,
debug: bool = False
):
"""
Launch a Dash app to visualize the pipeline schedule interactively.
Args:
schedule: Schedule object to visualize
port: Port to run the Dash app on
debug: Whether to run the Dash app in debug mode
"""
app = create_dash_app(schedule)
print(f"Starting Dash app on http://localhost:{port}/")
app.run_server(debug=debug, port=port)
|