from sentence_transformers import SentenceTransformer from sklearn.linear_model import LogisticRegression import pickle from sklearn.model_selection import train_test_split import joblib import pandas as pd def get_embedding(text): model_encode = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) embedding = model_encode.encode(text) return embedding def train_model(): sample_data_df = pd.read_excel("sms_process_data_main.xlsx") sample_data_df.dropna(subset=['MessageText', 'label'], inplace=True) input = sample_data_df['MessageText'] label = sample_data_df['label'] X_train, X_test, y_train, y_test = train_test_split(input, label, test_size=0.2, random_state=42) X_train_embeddings = get_embedding(X_train.tolist()) log_reg_model = LogisticRegression( max_iter = 1000) log_reg_model.fit(X_train_embeddings, y_train) save_model(log_reg_model,'log_reg_model.pkl') return log_reg_model def save_model(model, filename): with open(filename, 'wb') as model_file: pickle.dump(model, model_file) print(f"Model saved to {filename}") def load_model(filename): # loaded_model = joblib.load('log_reg_model.pkl') with open(filename, 'rb') as model_file: loaded_model = pickle.load(model_file) print(f"Model loaded from {filename}") return loaded_model