Spaces:
Running
Running
File size: 3,524 Bytes
d0269f7 44efa53 d0269f7 1dfa4f0 4f58d50 afc843a 06c102b 1f87132 1dfa4f0 06c102b 5af1ec5 06c102b 8c362bb c52b92b 06c102b 8c362bb 4f58d50 b27f379 4b2f4dc c9095ee 4f58d50 69d1f9e f49b111 69d1f9e 1dfa4f0 69d1f9e c9095ee 69d1f9e 1dfa4f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import os
import json
import shutil
import gradio as gr
import random
from huggingface_hub import Repository,HfApi
from huggingface_hub import snapshot_download
# from datasets import load_dataset
from datasets import config
hf_token = os.environ['hf_token'] # 确保环境变量中有你的令牌
local_dir = "VBench_sampled_video" # 本地文件夹路径
# dataset = load_dataset("Vchitect/VBench_sampled_video")
# print(os.listdir("~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/"))
# root = "~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/"
# print(config.HF_DATASETS_CACHE)
# root = config.HF_DATASETS_CACHE
# print(root)
def print_directory_contents(path, indent=0):
# 打印当前目录的内容
try:
for item in os.listdir(path):
item_path = os.path.join(path, item)
print(' ' * indent + item) # 使用缩进打印文件或文件夹
if os.path.isdir(item_path): # 如果是目录,则递归调用
print_directory_contents(item_path, indent + 1)
except PermissionError:
print(' ' * indent + "[权限错误,无法访问该目录]")
# 拉取数据集
os.makedirs(local_dir, exist_ok=True)
hf_api = HfApi(endpoint="https://huggingface.co", token=hf_token)
hf_api = HfApi(token=hf_token)
repo_id = "Vchitect/VBench_sampled_video"
model_names=['Gen-2','Gen-3']
with open("videos_by_dimension.json") as f:
dimension = json.load(f)['videos_by_dimension']
# with open("all_videos.json") as f:
# all_videos = json.load(f)
types = ['appearance_style', 'color', 'temporal_style', 'spatial_relationship', 'temporal_flickering', 'scene', 'multiple_objects', 'object_class', 'human_action', 'overall_consistency', 'subject_consistency']
def get_random_video():
# 随机选择一个索引
random_index = random.randint(0, len(types) - 1)
type = types[random_index]
# 随机选择一个Prompt
random_index = random.randint(0, len(dimension[type]) - 1)
prompt = dimension[type][random_index]
# 随机一个模型
random_index = random.randint(0, len(model_names) - 1)
model_name = model_names[random_index]
video_path_subfolder = os.path.join(model_name, type)
try:
hf_api.hf_hub_download(
repo_id = repo_id,
filename = prompt,
subfolder = video_path_subfolder,
repo_type = dataset,
local_dir = local_dir
)
except Exception as e:
print(f"[PATH]{video_path_subfolder} NOT in hf repo, try {model_name}")
print(e)
video_path_subfolder = model_name
try:
hf_api.hf_hub_download(
repo_id = repo_id,
filename = prompt,
subfolder = video_path_subfolder,
repo_type = dataset,
local_dir = local_dir
)
except Exception as e:
print(e)
# video_path = dataset['train'][random_index]['video_path']
print('error:', video_path)
return video_path
# Gradio 接口
def display_video():
video_path = get_random_video()
return video_path
interface = gr.Interface(fn=display_video,
outputs=gr.Video(label="随机视频展示"),
inputs=[],
title="随机视频展示",
description="从 Vchitect/VBench_sampled_video 数据集中随机展示一个视频。")
if __name__ == "__main__":
interface.launch() |