File size: 4,381 Bytes
d0269f7
44efa53
d0269f7
1dfa4f0
 
4f58d50
afc843a
06c102b
1f87132
1dfa4f0
06c102b
5af1ec5
06c102b
 
8c362bb
c52b92b
06c102b
 
 
8c362bb
 
 
 
 
 
 
 
 
 
 
4f58d50
b27f379
4b2f4dc
c9095ee
4f58d50
69d1f9e
14668be
 
 
 
 
f49b111
69d1f9e
 
 
 
 
 
 
 
14668be
c9095ee
 
49eecc5
c9095ee
 
 
49eecc5
c9095ee
 
 
30a5d87
c9095ee
 
49eecc5
c9095ee
 
 
49eecc5
c9095ee
 
 
30a5d87
c9095ee
69d1f9e
30a5d87
14668be
1dfa4f0
14668be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dfa4f0
14668be
 
 
 
 
1dfa4f0
14668be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import json
import shutil
import gradio as gr
import random
from huggingface_hub import Repository,HfApi
from huggingface_hub import snapshot_download
# from datasets import load_dataset
from datasets import config

hf_token = os.environ['hf_token']  # 确保环境变量中有你的令牌

local_dir = "VBench_sampled_video"  # 本地文件夹路径
# dataset = load_dataset("Vchitect/VBench_sampled_video")
# print(os.listdir("~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/"))
# root = "~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/"
# print(config.HF_DATASETS_CACHE)
# root = config.HF_DATASETS_CACHE
# print(root)
def print_directory_contents(path, indent=0):
    # 打印当前目录的内容
    try:
        for item in os.listdir(path):
            item_path = os.path.join(path, item)
            print('    ' * indent + item)  # 使用缩进打印文件或文件夹
            if os.path.isdir(item_path):  # 如果是目录,则递归调用
                print_directory_contents(item_path, indent + 1)
    except PermissionError:
        print('    ' * indent + "[权限错误,无法访问该目录]")

# 拉取数据集
os.makedirs(local_dir, exist_ok=True)
hf_api = HfApi(endpoint="https://huggingface.co", token=hf_token)
hf_api = HfApi(token=hf_token)
repo_id = "Vchitect/VBench_sampled_video"

model_names=[]
for i in hf_api.list_repo_tree('Vchitect/VBench_sampled_video',repo_type='dataset'):
    model_name = i.path
    if '.git' not in model_name and '.md' not in model_name:
        model_names.append(model_name)

with open("videos_by_dimension.json") as f:
    dimension = json.load(f)['videos_by_dimension']

# with open("all_videos.json") as f:
    # all_videos = json.load(f)

types = ['appearance_style', 'color', 'temporal_style', 'spatial_relationship', 'temporal_flickering', 'scene', 'multiple_objects', 'object_class', 'human_action', 'overall_consistency', 'subject_consistency']

def get_video_path_local(model_name, type, prompt):
    video_path_subfolder = os.path.join(model_name, type)
    try:
        return hf_api.hf_hub_download(
            repo_id = repo_id,
            filename = prompt,
            subfolder = video_path_subfolder,
            repo_type = "dataset",
            local_dir = local_dir
        )
    except Exception as e:
        print(f"[PATH]{video_path_subfolder}/{prompt} NOT in hf repo, try {model_name}",e)
        video_path_subfolder = model_name
        try:
            return hf_api.hf_hub_download(
                repo_id = repo_id,
                filename = prompt,
                subfolder = video_path_subfolder,
                repo_type = 'dataset',
                local_dir = local_dir
            )
        except Exception as e:
            print(f"[PATH]{video_path_subfolder}/{prompt} NOT in hf repo, try {model_name}",e)
            print(e)
    # video_path = dataset['train'][random_index]['video_path']
    print('error:', model_name, type, prompt)
    return None

def get_random_video():
    # 随机选择一个索引
    random_index = random.randint(0, len(types) - 1)
    type = types[random_index]
    # 随机选择一个Prompt
    random_index = random.randint(0, len(dimension[type]) - 1)
    prompt = dimension[type][random_index]
    prompt = os.path.basename(prompt)
    # 随机选择两个不同的模型名称
    random_model_names = random.sample(model_names, 2)
    model_name_1, model_name_2 = random_model_names
    video_path1 = get_video_path_local(model_name_1, type, prompt)
    video_path2 = get_video_path_local(model_name_2, type, prompt)
    return video_path1, video_path2, model_name_1, model_name_2, type, prompt



with gr.Blocks() as interface:
    with gr.Row():
        with gr.Column():
            model_name_1_output = gr.Textbox(label="Model Name 1")
            video_output_1 = gr.Video(label="Video 1")
        with gr.Column():
            model_name_2_output = gr.Textbox(label="Model Name 2")
            video_output_2 = gr.Video(label="Video 2")
    
    type_output = gr.Textbox(label="Type")
    prompt_output = gr.Textbox(label="Prompt")

    display_button = gr.Button("Display Videos")
    display_button.click(
        fn=get_random_video,
        outputs=[video_output_1, video_output_2, type_output, prompt_output, model_name_1_output, model_name_2_output]
    )

interface.launch()